
H  E  W  L  E  T - P A C K A R D  

JOURNAL 
O c t o b e r  1 9 9 2  

ib  18  92  6  15:46:88.3688563 
LB8B9B28Â·19BF, HP   2849BF 

H E W L E T T  
P A C K A R D  

© Copr. 1949-1998 Hewlett-Packard Co.



r H E W L E T T - P A C K A R D  

JOURNAL O c t o b e r  1 9 9 2  V o l u m e  4 3  â € ¢  N u m b e r  5  

Articles 

T h e  H P  N e t w o r k  A d v i s o r :  A  P o r t a b l e  T e s t  T o o l  f o r  P r o t o c o l  A n a l y s i s ,  b y  E d m u n d  G .  M o o r e  

N e t w o r k  A d v i s o r  P r o d u c t  E n h a n c e m e n t  P h i l o s o p h y  

E m b e d d i n g  A r t i f i c i a l  I n t e l l i g e n c e  i n  a  L A N  T e s t  I n s t r u m e n t ,  b y  S c o t t  G o d l e w ,  H o d  U n v e r r i c h ,  a n d  
S t e p h e n  W i t t  

T h e  U s e r  I n t e r f a c e  f o r  t h e  H P  4 9 8 0  N e t w o r k  A d v i s o r  P r o t o c o l  A n a l y z e r ,  b y  T h o m a s  A .  D o u m a s  

.  O b j e c t - O r i e n t e d  D e s i g n  a n d  S m a l l t a l k  

T h e  F o r t h  I n t e r p r e t e r  

T h e  N e t w o r k  A d v i s o r  A n a l y s i s  a n d  R e a l - T i m e  E n v i r o n m e n t ,  b y  S u n i l  B h a t  

N e t w o r k  A d v i s o r  P r o t o c o l  A n a l y s i s :  D e c o d e s ,  b y  R o Ã ± a  J .  P r u f e r  

M e c h a n i c a l  D e s i g n  o f  t h e  H P  4 9 8 0  N e t w o r k  A d v i s o r ,  b y  K e n n e t h  R .  K r e b s  

T h e  M i c r o w a v e  T r a n s i t i o n  A n a l y z e r :  A  N e w  I n s t r u m e n t  A r c h i t e c t u r e  f o r  C o m p o n e n t  a n d  S i g n a l  
A n a l y s i s ,  b y  D a v i d  J .  B a l l o  a n d  J o h n  A .  W e n d l e r  

F r e q u e n c y  T r a n s l a t i o n  a s  C o n v o l u t i o n  

D e s i g n  a n d  i n  t h e  M i c r o w a v e  T r a n s i t i o n  A n a l y z e r ,  b y  M i c h a e l  D e t h l e f s e n  a n d  J o h n  
A .  W e n d l e r  

Editor,  Richard P Dolan â€¢ Associate Editor,  Charles L Leath â€¢ Publ icat ion Production Manager Susan E Wright â€¢ I l lustrat ion. RenÃ©e D Pighihi 
Typography /Layou t ,  C indy  Rub in  â€¢  Tes t  and  Measurement  Organ iza t ion  L ia i son .  J .  M ichae l  Gospe  

Advisory Harry Wi l l iam W. Brown, Integrated Circui t  Business Div is ion,  Santa Clara.  Cal i forniaÂ» Harry Chou. Microwave Technology Div is ion.  Santa Rosa, Cal i fornia* 
Rajesh Gordon. Divis ion, Systems Divis ion, Cupert ino, Cal i fornia Gary Gordon. HP Laborator ies, Palo Al to,  Cal i fornia Â«Jim Grady, Waltham Divis ion, Waltham, 
Massachuset ts Man J.  Mar l ine,  Systems Technology Div is ion,  Rosevi l le .  Cal i forn ia* Bryan Hoog. Lake Stevens Instrument Div is ion.  Everet t ,  Washington* Roger L 
Jungerman, Microwave Technology Division, Santa Rosa, California * Paula H. Kanarek, InkJet Components Division, Corvall is. Oregon â€¢ Thomas F Kraemer, Colorado 
Springs Divis ion, Colorado Springs, Colorado Ruby B. Lee. Networked Systems Group. Cupert ino. Cal i fornia* Bi l l  L loyd, HP Laborator ies Japan. Kawasaki ,  Japan* 
A l f red Moore,  San Ana ly t ica l  D iv is ion .  Waldbronn.  Germany*  Michae l  P  Moore,  Measurement  Systems Div is ion ,  Love land.  Co lorado â€¢ She l ley  I ,  Moore,  San 
Diego Worldwide Mowson, San Diego. Cali fornia * Dona L. Morri l l ,  Worldwide Customer Support Division. Mountain View. Cali fornia * Wil l iam M. Mowson, Open Systems 
Software Colorado Chelmsford. Massachusetts â€¢ Sleven J. Narciso, VXI Systems Division, Loveland. Colorado * Raj Oza, Software Technology Division, Mountain View, 
California â€¢ â€¢ Tlan Phua. Asia Peripherals Division, Singapore * Kenneth 0 Poulton, HP Laboratories, Palo Alto. California â€¢ Giinter Riebesell. Boblingen Instruments 
Division, Saunders, Germany Marc J, Sabatel la, Systems Technology Division, Fort Col l ins. Colorado* Michael B- Saunders, Integrated Circuit  Business Division, 
Corval l is ,  For t  Phi l ip  Stenton,  HP Laborator ies Br is to l .  Br is to l .  England* Stephen R.  Undy,  Systems Technology Div is ion.  For t  Col l ins,  Colorado* Koichi  Yanagawa. 
Kobe Instrument Division, Kobe. Japan â€¢ Dennis C York. Corvallis Division, Corval/is, Oregon â€¢ Barbara Zimmer, Corporate Engineering, Palo Alto, California 

OHewlet t -Packard Company 1992 Pr in ted in  USA The Hewlett-Packard Journal is printed on recycled paper. 

2 October 1992 Hewlett-Packard Journal 
© Copr. 1949-1998 Hewlett-Packard Co.



72 A Visua l  Engineer ing Env i ronment  for  Test  Sof tware Development ,  by  Douglas C.  Beethe and 
Wi l l i am L  Hunt  

I  Object-Oriented Programming in a Large System 

|  Deve lop ing  an  Advanced User  In te r face  fo r  HP VEE,  by  Wi l l i am L  Hunt  

I  HP VEE:  A  Data f low Arch i tec tu re ,  by  Doug las  C.  Beethe  

A  Per fo rmance  Mon i to r ing  Sys tem fo r  D ig i ta l  Te lecommun ica t ions  Ne tworks ,  by  G iovann i  
Nieddu,  Fernando M.  Secco,  and Alber to  Val ler in i  

103 G-Link:  A Chipset  for  Gigabi t -Rate Data Communicat ion,  by Chu-Sun Yen, Richard C. Walker,  
Patr ick T.  Petruno, Cheryl  Stout,  Benny W.H. Lai ,  and Wi l l iam J.  McFar land 

|  Bang-Bang Loop Analysis 

Departments 

4  I n  t h i s  I s s u e  
5 Cover 
5  W h a t ' s  A h e a d  

1 0 0  A u t h o r s  

T h e  H e w l e t t - P a c k a r d  J o u r n a l  i s  p u b l i s h e d  b i m o n t h l y  b y  t h e  H e w l e t t - P a c k a r d  C o m p a n y  t o  r e c o g n i z e  t e c h n i c a l  c o n t r i b u t i o n s  m a d e  b y  H e w l e t t - P a c k a r d  
( H P )  p e r s o n n e l .  W h i l e  t h e  i n f o r m a t i o n  f o u n d  i n  t h i s  p u b l i c a t i o n  i s  b e l i e v e d  t o  b e  a c c u r a t e ,  t h e  H e w l e t t - P a c k a r d  C o m p a n y  d i s c l a i m s  a l l  w a r r a n t i e s  o f  
m e r c h a n t a b i l i t y  a n d  f i t n e s s  f o r  a  p a r t i c u l a r  p u r p o s e  a n d  a l l  o b l i g a t i o n s  a n d  l i a b i l i t i e s  f o r  d a m a g e s ,  i n c l u d i n g  b u t  n o t  l i m i t e d  t o  i n d i r e c t ,  s p e c i a l ,  o r  
c o n s e q u e n t i a l  d a m a g e s ,  a t t o r n e y ' s  a n d  e x p e r t ' s  f e e s ,  a n d  c o u r t  c o s t s ,  a r i s i n g  o u t  o f  o r  i n  c o n n e c t i o n  w i t h  t h i s  p u b l i c a t i o n .  

S u b s c r i p t i o n s :  T h e  H e w l e t t - P a c k a r d  J o u r n a l  i s  d i s t r i b u t e d  f r e e  o f  c h a r g e  t o  H P  r e s e a r c h ,  d e s i g n  a n d  m a n u f a c t u r i n g  e n g i n e e r i n g  p e r s o n n e l ,  a s  w e l l  a s  t o  
q u a l i f i e d  a d d r e s s  i n d i v i d u a l s ,  l i b r a r i e s ,  a n d  e d u c a t i o n a l  i n s t i t u t i o n s .  P l e a s e  a d d r e s s  s u b s c r i p t i o n  o r  c h a n g e  o f  a d d r e s s  r e q u e s t s  o n  p r i n t e d  l e t t e r h e a d  ( o r  
i nc lude  the  submi t t i ng  ca rd )  to  the  HP headquar te rs  o f f i ce  i n  you r  coun t ry  o r  t o  the  HP address  on  the  back  cove r .  When  submi t t i ng  a  change  o f  add ress ,  
p l e a s e  n o t  y o u r  z i p  o r  p o s t a l  c o d e  a n d  a  c o p y  o f  y o u r  o l d  l a b e l .  F r e e  s u b s c r i p t i o n s  m a y  n o t  b e  a v a i l a b l e  i n  a l l  c o u n t r i e s .  

S u b m i s s i o n s :  w i t h  a r t i c l e s  i n  t h e  H e w l e t t - P a c k a r d  J o u r n a l  a r e  p r i m a r i l y  a u t h o r e d  b y  H P  e m p l o y e e s ,  a r t i c l e s  f r o m  n o n - H P  a u t h o r s  d e a l i n g  w i t h  
H P - r e l a t e d  c o n t a c t  o r  s o l u t i o n s  t o  t e c h n i c a l  p r o b l e m s  m a d e  p o s s i b l e  b y  u s i n g  H P  e q u i p m e n t  a r e  a l s o  c o n s i d e r e d  f o r  p u b l i c a t i o n .  P l e a s e  c o n t a c t  t h e  
E d i t o r  b e f o r e  a r t i c l e s  s u c h  a r t i c l e s .  A l s o ,  t h e  H e w l e t t - P a c k a r d  J o u r n a l  e n c o u r a g e s  t e c h n i c a l  d i s c u s s i o n s  o f  t h e  t o p i c s  p r e s e n t e d  i n  r e c e n t  a r t i c l e s  
a n d  m a y  a r e  l e t t e r s  e x p e c t e d  t o  b e  o f  i n t e r e s t  t o  r e a d e r s .  L e t t e r s  s h o u l d  b e  b r i e f ,  a n d  a r e  s u b j e c t  t o  e d i t i n g  b y  H P .  

Copyright publ icat ion provided Hewlett-Packard Company. Al l  r ights reserved. Permission to copy without fee al l  or part  of  this publ icat ion is hereby granted provided 
t ha t  l i t he  Company  a re  no t  made ,  used ,  d i sp layed ,  o r  d i s t r i bu ted  f o r  commerc ia l  advan tage ;  21  t he  Hew le t t -Packa rd  Company  copy r i gh t  no t i ce  and  t he  t i t l e  
o f  t h e  t h e  a n d  d a t e  a p p e a r  o n  t h e  c o p i e s ;  a n d  3 )  a  n o t i c e  s t a t i n g  t h a t  t h e  c o p y i n g  i s  b y  p e r m i s s i o n  o f  t h e  H e w l e t t - P a c k a r d  C o m p a n y .  

P lease  Jou rna l ,  i nqu i r i es ,  submiss ions ,  and  reques ts  t o :  Ed i t o r ,  Hew le t t -Packa rd  Jou rna l ,  3200  H i l l v i ew  Avenue ,  Pa lo  A l t o ,  CA  94304  U .S .A .  

October 1992 Hewlett-Packard -Journal 
© Copr. 1949-1998 Hewlett-Packard Co.



In this Issue 
A protocol  analyzer  is  an inst rument  for  moni tor ing and interpret ing the data at  a 
po in t  in  a  data communicat ion network,  a long wi th  the synchronizat ion,  er ror  
correct ion,  and contro l  in format ion that  accompanies the data.  The def in i t ion of  
the correct  form for  a l l  o f  th is  in format ion is  ca l led a protocol ,  and many d i f fer  
ent  s tandard protocols ex is t .  Trouble on a network is  of ten caused by deviat ions 
f rom the  cor rec t  p ro toco l ,  wh ich  may or  may no t  be  caused by  hardware  fa i l  
ures. f ind protocol analyzer is supposed to help the network troubleshooter f ind 
such problems and restore serv ice quick ly.  In i ts  approach to th is  task,  the HP 
4980 Network  Adv isor  fami ly  o f  personal -computer -based protoco l  ana lyzers  
automates much of  the work of  in terpretat ion and faul t  analys is  that  t rad i t ional  

analyzers  have le f t  to  the t roubleshooter ,  o f fer ing both protoco l  commentary  and exper t  system suppor t  
for the Analyzer t ime. Along with the values of various f ields and frames, the Network Analyzer tel ls the user 
when  a r t i f i c i a l  va lues  o r  f r ame  sequences  occu r .  A  bu i l t - i n  a r t i f i c i a l  i n te l l i gence  app l i ca t i on  ca l l ed  
the Faul t  F inder  automates the t roubleshoot ing process,  us ing the same ru les as exper t  t roubleshooters 
to  invest igate l ike ly  causes and zero in  on the problem. The ar t ic le  on page 6 in t roduces the Network 
Advisor, architec the expert Fault Finder system is described in the art icle on page 11. The software architec 
ture of general-purpose Network Advisor divides tasks between two environments: the general-purpose environment 
(page 21),  which implements the user in ter face,  and the analys is and real - t ime envi ronment (page 29),  
which recognizes data and processes i t  in real  t ime. The Network Advisor recognizes most major protocols;  
i t  c a n  i t  t h e  p r o t o c o l  b e i n g  m o n i t o r e d  a n d  d o e s  n o t  n e e d  t o  k n o w  i t  i n  a d v a n c e .  R e c o g n i t i o n  a n d  
in terpreta t ion of  the syntax and semant ics  o f  the var ious network protoco ls  are the tasks of  the Network 
Advisor 's  analyzers faci l i ty  (page 34).  Here the Network Advisor d i f fers f rom tradi t ional  protocol  analyzers 
both in the number of  protocols i t  can handle and in i ts  abi l i ty  to provide not  just  data but  answers to 
protoco l  prob lems.  

The protocol  analyzer  isn ' t  the only  approach to mainta in ing the heal th  of  a  d ig i ta l  network.  Depending 
on the type,  s ize,  and importance of  a network,  d is t r ibuted moni tor ing may be appropr ia te.  The HP Model  
E3560  fo r  pe r fo rmance  mon i to r ing  and  remote  tes t  sys tem i s  des igned  fo r  con t inuous  su rve i l l ance  o f  
d ig i ta l  te lecommunicat ions networks accord ing to  Recommendat ion G.821 of  the In ternat iona l  Te lephone 
and Telegraph Consul ta t ive Commit tee (CCITT).  The system prov ides network managers wi th s tat is t ics 
that  re f lect  the qual i ty  o f  network serv ice and co l lects  a larms that  s ignal  fa i lures in  network e lements.  I t  
scans hierarchy streams at the four main data rates in the European CEPT hierarchy (2, 8, 34, and 140 megabits 
per  second) ,  look ing for  a larms and b inary errors.  The system's demul t ip lex ing capabi l i ty  can p ick out  
and moni tor  lower-rate t r ibutary s t reams wi th in a h igher-rate data st ream. The design of  the HP E3560 
system is  descr ibed in the ar t ic le on page 89.  

In  the  ar t i c le  on  page 48,  the  des igners  o f  the  new HP Mode l  71500A microwave t rans i t ion  ana lyzer  
describe it as "a cross between a high-frequency sampling oscilloscope, 8 dynamic signal analyzer, and 
a  n e t w o r k  o r  I n d e e d ,  i t s  b l o c k  d i a g r a m  d o e s n ' t  c o n t a i n  a n y  e l e m e n t s  t h a t  a r e n ' t f o u n d  i n  o n e  o r  
more this instrument well-known instruments. The contribution of this new microwave instrument is in its archi 
tecture, sampling, is, how its components relate to each other, and in its programming. Using periodic sampling, 
analog- to-d ig i ta l  convers ion,  and d ig i ta l  s ignal  process ing in  new ways,  i t  br ings t ime-domain analys is  to  
mic rowave component  eng ineers  who in  the  pas t  have  had to  re ly  p r imar i l y  on  f requency-domain  mea 
surements .  T ime-domain measurements  are par t icu lar ly  impor tant  in  pu lsed-RF and nonl inear  dev ice 
test ing, al lows the microwave transi t ion analyzer is opt imized for these appl icat ions. I ts archi tecture al lows 
i t  to  make magni tude and phase measurements on RF pulses wi th r ise t imes as fast  as 25 p icoseconds.  
The ar t ic le  on page 48 in t roduces th is  new analyzer ,  demonst ra tes many of  i ts  new measurements and 
appl icat ions,  and expla ins the importance of  i ts  h igh sensi t iv i ty ,  synthesized sampl ing rate,  and stat ionary 
sampl ing mode.  The design t rade-of fs  and chal lenges are d iscussed in  the ar t ic le  on page 63.  
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Elect ron ic  spreadsheet  app l ica t ions le t  people  express bus iness prob lems in  the fami l ia r  rows and co l  
umns know program to With a spreadsheet program, you don't have to know how to program a computer to 
interact diagram, one to solve business problems. For engineers, the analog of the ledger is the block diagram, 
and now translate an analog of the spreadsheet program to free engineers from having to translate their  
b lock diagrams into unfami l iar  computer languages. The HP Visual  Engineer ing Environment,  or  HP VEE, 
is a sof tware tool  that  a l lows users to create solut ions by l inking v isual  objects or Â¡cons into block dia 
grams.  The user  se lects objects f rom a menu,  l inks them in the way that  represents how data f lows f rom 
one to ar t ic le HP and then executes the resul t ing block diagram. The art ic le on page 72 explains what HP 
VEE does and how i t  works.  As you might  expect ,  a lot  of  thought went into making i ts  user inter face as 
user- f r iendly as possib le,  and that  ef for t  is  d iscussed in the ar t ic le on page 78.  I ts  dataf low archi tecture,  
descr ibed on page 84,  is  an object -or iented implementat ion that  s t r ic t ly  separates v iews of  an object  
f rom the under ly ing model .  

As  fas te r  a l ready  a re  deve loped ,  fas te r  da ta  l i nks  a re  needed to  in te rconnec t  them.  There  i s  a l ready  
a demand Ethernet serial data links capable of gigabit-per-second data rates, 100 times as fast as Ethernet 
local  Whi le networks and ten t imes as fast  as the FDDI f iber opt ic standard. Whi le gigabi t-rate l inks have 
been used com long-haul  te lephone networks for  many years,  thei r  implementat ion is  too cost ly  and com 
plex 103) computer use. The HP HDMP-1000 gigabit  l ink chipset (page 103) is the f i rst  commercial ly avai l  
able,  two-chip,  1.4-g igabi t -per-second,  low-cost ,  ser ia l  data l ink in ter face.  The G- l ink chipset  consists of  
a  t ransmit ter  ch ip and a receiver  ch ip and requi res no external  par ts  or  adjustments.  The t ransmit ter  
accepts paral le l  data and outputs ser ia l  data to the l ink,  whi le  the receiver  chip reassembles the paral le l  
data CIMT inversion other end. Using a special encoding algorithm called CIMT (conditional inversion with mas 
ter  t rans i t ion)  and an on-of f  or  "bang-bang"  phase- locked loop,  the ch ipset  automat ica l ly  mainta ins dc 
balance possible the transmitted data and maintains data synchronization. Among its many other possible 
uses, data G-l ink chipset has been adopted as the basis for two ser ial  data interface standards. 

R.P. Dolan 
Editor 

Cover 
The HP 4980 Network Adv isor  can be connected to  a  network l ike  any other  node to  moni tor the heal th  o f  
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The HP Network Advisor: A Portable 
Test Tool for Protocol Analysis 
This technology protocol analysis tool combines expert system technology 
with decodes comprehensive set of network statistics and protocol decodes to 
speed problem resolution for token ring and Ethernet networks. 

by Edmund G. Moore 

Protocol analysis consists of monitoring and interpreting the 
data communications protocols on a network. The HP 4980 
Series Network Advisor products are protocol analyzers 
offering support for both LAN (local area networks) and 
WAN (wide area networks) technologies. 

The primary users of a protocol analyzer are people respon 
sible for maintaining communication networks. These users 
fall into two categories: those responsible for maintaining 
service within their own company (private network opera 
tors) and those who provide service to other companies 
(network service organizations). Protocol analyzers are used 
to solve the most difficult network problems. Since these 
problems account for 20% of all network failures and usually 
mean degraded network service, the protocol analyzer must: 

Give the user the tools needed to find the problem and 
restore service quickly 
Be easy to use so that the user does not have to spend time 
figuring out how to operate the product 
Provide the user with information that is pertinent to solving 
the problem. 

The HP Network Advisor provides features to satisfy 
these requirements. 

Main Features 
The Network Advisor is a portable integrated test tool that 
supports testing of IEEE 802.3 (Ethernet) and IEEE 802.5 
(token ring) network configurations (see Fig. 1). The three 
product configurations for the Network Advisor are given 
in Table I. 

Fig. 1. The HP Network Advisor 
showing the mainframe and the 
folding keyboard and display. The 
display shows an example sum 
mary statistics screen in which 
graphical objects such as bar 
charts, pie charts, and gauges are 
used to present information. 
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Table I  
Ne twork  Conf igura t ions  Suppor ted  

by  HP Network  Adv isor  Produc ts  

P r o d u c t s  S u p p o r t e d  N e t w o r k  C o n f i g u r a t i o n s  

I E E E  8 0 2 . 3  I E E E  8 0 2 . 5  

H P  4 9 8 0 A  X  X  

H P  4 9 8 1 A  X  

H P  4 9 8 2 A  X  

The Network Advisor is made up of two physical compo 
nents: a PC (personal computer) module and an acquisition 
module. The PC contains all the user interface functionality 
(keyboard, display, disks, I/O ports). The acquisition module 
is a processing system custom designed to meet the data 
processing requirements of the network under test. 

The measurement focus of the Network Advisor is rapid 
problem isolation â€” that is, reducing the time needed to re 
store the network to operation. Traditional protocol analyz 
ers focus on providing users with accurate information. On 
a LAN, this can mean tens of thousands of frames of data. 
The challenge for the troubleshooter is to find the frame that 
is the root cause of a problem. Users of traditional analyzers 
often spend hours examining pages of data looking for a 
clue to solve the problem. 

The Network Advisor provides the user with not only all of 
the network frame data, but also abstracted views of that 
data. These views include: statistics, protocol following, 
data filtering, protocol commentary, and expert system sup 
port. Some of these tools exist in other products. However, 
tools like protocol commentary and expert system support 
are new to the industry. 

Traditionally protocol analysis tools have focused on two 
features: protocol decodes and statistics. Protocol decodes 
are routines that simply take the protocol header informa 
tion in the frames and display this information for the user. 
Statistics give the user information on traffic levels used by 
the entire network or by individual devices. In the Network 
Advisor decodes are improved by interpreting the header 
information. Users are told not only the value of a field, but 
also the expected value. Additionally, the Network Advisor 
keeps track of protocol state information, allowing the Net 
work Advisor to tell users when unexpected sequences of 
frames occur. Both interpretation and state information are 
new features for a protocol analyzer. 

Statistics in the Network Advisor are designed to provide 
the user with an easy-to-understand summary view of the 
network. Using the analysis power of the front end and a 
graphical interface, a great deal of information is displayed 
in a concise, summary format (see the display in Fig. 1). 
Data on network use, errors, traffic, protocol distribution, 
and traffic level on selected frames is combined into one 
summary display. 

Protocol commentary and expert system support are power 
ful additions to the protocol analysis toolset. A software 

Protocol following is the process of following the state of a connection Examples of states 
include essential  resequencing data, and reassembling data Protocol fol lowing is essential  
for accurate decoding of higher-layer protocols. 

application called a protocol commentator observes the 
protocols in network frame data and distills the data into 
concise events of interest. Expert system support in the Net 
work Advisor is provided by an application called the Fault 
Finder, which automates the troubleshooting process. Both 
of these tools are discussed in the article on page 1 1. 

Other  Features  
Besides the new additions to the protocol analysis toolset 
described above, the Network Advisor provides some 
traditional protocol analysis features in new ways. 

Mechanical and Ergonomic Features. Users of protocol analy 
sis tools such as the Network Advisor frequently need to take 
the tool to the problem. For this reason portability and rug- 
gedness are key features of the Network Advisor (see Fig. 1). 
The folding keyboard and display are well-protected. The 
instrument has a modular acquisition subsystem and the 
assemblies are connected with a single connector. Four 
quarter-turn fasteners provide the mechanical connection, 
making it easy to change from one network technology to 
another in a few seconds. 

The Network Advisor is the first HP product to incorporate 
active matrix color LCD technology. Color LCD provides the 
user with reduced size and weight while providing a bit 
mapped color graphics interface. The color LCD was added 
very late in the project at considerable risk to product 
introduction. The team did it without slipping the product 
introduction schedule. Response to the package concept 
and especially to the color LCD has been very positive. 

The article on page 41 describes the mechanical design of 
the Network Advisor. 

Use of MS-DOS.Â® The LAN testing market uses products 
based on the MS-DOS operating system. The DOS require 
ment imposed a performance problem for the design team 
because many of the existing DOS-based products could not 
match the data integrity goals we had set. The Network Ad 
visor design team solved this problem by creating a machine 
that has two independent environments: data acquisition 
and DOS. The data acquisition module is custom-built to 
ensure data integrity under any user network condition. The 
DOS module is fully DOS-compatible and provides an excel 
lent user interface. The two modules interface using dual- 
port memory, which is mapped into the DOS memory space 
just like commercial PC I/O cards. 

We gained substantial benefits from this dual-module ap 
proach. Since our DOS hardware was heavily leveraged, we 
needed only one full-time engineer for both hardware and 
BIOS development. The architectural split allows us to mix 
and match different data acquisition and DOS engines to 
create multiple price/performance products easily. Finally, 
being fully DOS-compatible allows us to leverage the vast 
amount of commercial software available, particularly 
communications software. 

Data Capture and Run-Time Analysis. Ensuring that all data 
from the network can be captured, even under worst-case 
loading, is a difficult design task. In addition to data capture, 
the front end (data acquisition module) has substantial data 
processing requirements. In a general sense, the Network 
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Advisor is looking at the sum of all network traffic. Analyz 
ing all that traffic would require a processing bandwidth that 
matches the total processing resources of all networked 
elements. Therefore, the worst-case processing load imposed 
on the analyzer will always outstrip the ability of the instru 
ment to process it. Instead of trying to process all network 
traffic, the Network Advisor focuses on processing a subset 
of all the network traffic it sees. 

As a test tool, the Network Advisor needs to see everything, 
but not to process everything. Commercial networking chips 
are designed to be used by network nodes and they auto 
matically reject input that is outside the specification for the 
network. A test tool must see this out-of-specification data 
to give the user a complete picture. An HP-developed receive 
engine ensures that the Network Advisor provides the user 
with all the data associated with an error frame. 

User Interface. MS-DOS-based network test products tradi 
tionally provide a single task model user interface. This 
means that the product allows only one task at a time to 
execute. The Network Advisor provides a multitasking, bit 
mapped user interface that is mouse- and keyboard-driven. 
Users can have multiple tasks executing simultaneously 
using a windowing environment. Users can start the traffic 
generator (to simulate a problem on the network) while run 
ning network statistics (to observe what effect the traffic 
generator has) and the network commentator (to be in 
formed of any problems that result). All these tasks can run 
simultaneously to help solve a network problem. 

Product Architecture 
As mentioned earlier, the Network Advisor is divided into two 
major environments: a general-purpose environment, which 
is essentially a personal computer, and a data acquisition, 
analysis, and real-time (ART) environment. This division is 
applied to the hardware and software architectures of the 
Network Advisor. 

Hardware Architecture. The general-purpose portion of the 
environment contains a 20-MHz Intel386SX microprocessor 
with 8M bytes of RAM. The BIOS and support chip set are 
from Chips and Technology Company and the disks are 
the same ones qualified for use in the HP Vectra PC. The 
internal display is VGA LCD, either grayscale or color. Our 
objective was to create a PC-compatible machine. Since 
the general-purpose environment is a PC, our engineering 
investment was relatively small. Leverage of design and 
components occurred whenever possible. 

The analysis and real-time environment is based on the 
AMD29000 RISC chip. RISC technology was selected be 
cause of price/performance concerns. We needed a CPU that 
would have enough bandwidth to perform our run-time anal 
ysis and we needed to provide enough bus bandwidth to do 
DMA transfers of all the frames into main memory during 
run time. The analysis and real-time environment uses 4M to 
16M bytes of memory for program execution and data stor 
age for captured frame data. Program and data space uses 
2M to 3M bytes of memory. Data acquisition is based on a 
programmable front end that uses Xilinx programmable gate 
arrays. The front end provides framing, pattern recognition, 
run-time pattern matching, run-time frame filtering, statisti 
cal counters (e.g., frames per second, errors per second, 
etc.), DMA control, and basic node card functionality (to 

transmit frames and participate in the network protocol as 
needed). The front end is designed to ensure data integrity 
in the capture buffer under any network condition, valid or 
invalid. The ability to ensure data integrity is an important 
feature of the Network Advisor. 

Software Architecture. The general-purpose environment was 
developed using object-oriented programming. Smalltalk is 
the language used. Smalltalk provides multitasking, memory 
management, object-oriented design support, and support 
for all DOS functions (primarily I/O control). The Network 
Advisor's user interface was written in Smalltalk to imitate 
the OSF/Motif user interface. l 

The software was developed on HP Vectra PCs, making the 
port to the target hardware quite simple. Since the software 
team was large, a toolset that allowed multiple users to 
share the code "image" over a network was employed. This 
multiuser tool provided us with a networked development 
environment. 

The analysis and real-time software was also developed 
using object-oriented programming technology, except that 
C++ was the language used. Software was developed on the 
HP-UX operating system and cross-compiled onto the 
AMD29000. Software development for these modules was 
also a team effort with the code image residing on a net 
worked HP-UX server. The core of the analysis and real-time 
code was leveraged from another HP project called CONE 
(common OSI network environment).2 CONE is the protocol 
kernel used in HP workstations for managing networks. The 
capabilities and design of CONE matched the basic tools we 
needed for protocol analysis. 

The analysis and real-time software is described on page 29. 
The software developed to run on the PC and the general- 
purpose environment are described on page 22. 

Software Management 
Except for the DOS BIOS and the analysis and real-time 
boot and self-test, which are ROM-based, all the software in 
the Network Advisor is disk-based. Having a DOS-based 
software system has proven to be a major benefit to product 
enhancement and to our customers. During the first year of 
the Network Advisor's life, we created three major upgrades, 
several bug fixes, and a new leveraged product. Support for 
all of these changes was based on shipping new disks. 

A DOS-based system does pose some problems. First, there 
is a tendency for users to modify the system configuration 
to add applications, drivers, and TSRs (terminate and stay 
resident programs). Different DOS applications do not al 
ways peacefully coexist. In addition to software, the ability 
to have different disk drives, different amounts of memory, 
and different CPUs creates a matrix of configurations that 
can be overwhelming. 

Even if the configuration issue is managed, being DOS- 
compatible means evolving over time. DOS 5.0 has become 
the standard since our release, and in March 1992 we 
changed our shipped configuration to be DOS 5.0 with a 
single disk partition. We still must support our customers 
who still have Network Advisors with DOS 3.3 and multiple 
disk partitions. This creates its own logistical problem. 

(continued on page 10] 
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Network Advisor Product Enhancement Philosophy 

Our intent was to release an initial Network Advisor product with a credible set of 
features as quickly as possible. The initial feature set did not provide all of the 
capabilities we wanted. It did provide enough capability to solve customer problems. 
We wanted to provide releases of additional software on a frequent basis (two or 
three times a year). The initial release occurred in July 1991 and since then we have 
had new 1992. in November 1991, March 1992, July 1992, and August 1992. 
Each release added additional capabilities in all areas of the product including: 

Fault Finder. The Network Advisor can do automatic troubleshooting via the Fault 
Finder on the following network media: 

IEEE 802.3 Media Access Control (MAC) Hardware 
IEEE 802.5 MAC Hardware- 

Commentators. Commentators provide a high-level abstraction of protocol activity. 
Unlike a protocol decode, which displays all of the fields associated with a partic 
ular protocol, the commentator reports on the meaning of a frame Â¡n the context of 
the service being provided by the protocol. The Network Advisor provides the 
following commentators: 

Ethernet Novell Commentator 
Ethernet ICMP Commentator 
Token Ring Commentator 
Token Ring Novell Commentator 
Token Ring IBM LAN Manager Commentator 

Decodes. The Network Advisor decodes most industry-standard protocols. A 
decode frame protocol experts to examine the contents of a protocol data frame 
in detail. The Network Advisor provides the following decodes: 

Ethernet/LLC 802.3 
IEEE 802.2 SNAP FLAP Token Ring 
IEEE 802.2 Token Ring MAC SNAP 
Appletalk Address Resolution Protocol 
Datagram Delivery Protocol 
EtherTalk Link Access Protocol 
AppleTalk Transaction Protocol 
Routing Table Maintenance Protocol 
AppleTalk Echo Protocol 
AppleTalk Name Binding Protocol 
Banyan Vines Internet Protocol 
Vines Address Resolution Protocol 
Vines Routing Update Protocol 
Vines Sequenced Packet Protocol 
Vines Internet Control Protocol 
Vines Interprocess Communication Protocol 
DECnet Data Access Protocol 
Session Control Protocol 
Data Access Protocol 
Network Services Protocol 
DECnet Routing Protocol 
Local Area Transport Protocol 
Novell Netware Code Protocol 
Sequenced Packet exchange Protocol 
Internet Packet exchange Protocol 
IBM PC LAN NetBIOS Protocol 
Server Message Block Protocol 
TCP/IP Telnet Transport Control Protocol 
User Datagram Protocol Internet Protocol 
File Transfer Protocol 
Internet Control Protocol 
Address Resolution Protocol 
OSI CLNP 
OSI ES-IS 
OSI TP4 
SNA 
NetBIOS 

XNS Internetwork Datagram Protocol 
Sequence Packet Protocol 
3COM NetBios Protocol 
Server Message Block Protocol 

Statistics. The Network Advisor's statistical measurements give the user a 
graphical view of critical network performance parameters and network users: 

Ethernet Summary Statistics 
Ethernet Node Statistics 
Ethernet Top Talkers 
Ethernet Top Error Sources 
Ethernet Vital Signs 

Token Ring Summary Statistics 
Token Ring Station Statistics 
Token Ring Top Talkers 
Token Ring Top Error Sources 

Canned for Canned tests provide a set of powerful troubleshooting tools for 
performing tasks such as testing for connectivity and finding active stations. Many 
of the Net tests stimulate the network to simulate network devices. The Net 
work Advisor provides the following canned tests: 

Ethernet Transceiver Test 
Token Ring List Configuration 
Report Servers Token Ring List 
LAN Managers Token Ring List 
NETBIOS Stations Token Ring List 
Novell Stations Token Ring List 
Ring Error Monitors Token Ring List 
Ring Parameter Servers Token Ring List 
All Bridges Token Ring List 
All Stations Token Ring List 
Calculate Ring Length 
Token Ring Lobe Test 
Token Ring Request Station ID 
Token Ring Station Adapter Status 
Token Ring Active Station List 
Novell Find Nearest Server 
Novell Get List of Servers 
Novell View Nodes 
Novell Server Ping 
Novell Node Ping 
Novell Determine Connected Networks 
TCP/IP ARP Request 
TCP/IP Ping 

Node nodes The discovery measurement identifies active nodes on the 
network by observing network traffic. The measurement can find and display 
MAC (media access control) and network addresses. The binding of MAC and 
network addresses clearly shows the activity of routers Â¡n the network. 
Discovered nodes can be merged into the system nodelist. 

WAN Capability. A data acquisition module that contains the HP 4957 WAN 
analyzer functionality has been implemented as a PC I/O card. Using the Network 
Advisor's DOS capability, this card gives customers WAN support, without any 
additional software. 

FDDI interfaces A data acquisition module is available that interfaces to FDDI 
(fiber the data interface) networks. This module was implemented Â¡n the 
same spirit as the IEEE 802.3 and 802.5 modules â€” ensure data integrity under any 
network condition. 

Disk and During development, we had planned to use 40-Mbyte and 
80-Mbyte hard disks. However, by the time we introduced the product, typical disk 
densities for PC hard disks had changed (50 Mbytes to 105 Mbytes were typical 
sizes). We switched to 80-Mbyte and 160-Mbyte disk drives during the first year. 

Intel486 CPU. We created an Intel486 version of the CPU to keep current with 
CPU technology. The Network Advisor has been designed to allow adaptation to 
new CPU and I/O technologies. 
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Conclusion 
The Network Advisor has created a new standard in the 
LAN test marketplace. It is a tool that not only collects and 
supplies users with network traffic data, but also extracts 
pertinent answers from the volumes of data. As a DOS- 
based system, the Network Advisor offers compatibility, 
flexibility, and a clear path for evolution. As an instrument, 
the Network Advisor offers unprecedented performance in 
data capture and analysis and brings HP quality and data 
integrity to the LAN marketplace. 
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Embedding Artificial Intelligence in a 
LAN Test Instrument 
The knowledge and processes used by a skilled LAN troubleshooter are 
built into an interactive expert system application that runs on HP 4980 
Series Network Advisor protocol analyzers. 

by Scott Godlew, Rod Unverrich, and Stephen Witt 

The capabilities of artificial intelligence techniques are pro 
vided in the HP 4980 Series Network Advisor protocol ana 
lyzers by a software application called the Fault Finder. It is 
a rule-based expert system that is built around a blackboard 
architecture.1'2 The rules, written in PROLOG,3 invoke Net 
work Advisor measurements (statistics, decodes, and ap 
plications) that are available to the user. The Fault Finder 
allows the user to control and view the troubleshooting pro 
cess at a detailed single-step level or at a fully automated 
level. It also includes an explanation facility that describes 
the logic used to solve a specific problem, a definition of the 
problem, and a description of the actions required to remedy 
the problem. 

This article will discuss LAN troubleshooting, automated 
troubleshooting using expert systems, the Fault Finder, the 
architecture of the Fault Finder, and a typical problem 
solved using the Fault Finder on a token ring network. 

Expert troubleshooters use a paradigm of making observa 
tions, forming hypotheses, and proving or disproving those 
hypotheses until a problem is found (see Fig. 1). The Fault 
Finder uses this same paradigm. A description of how this 
model is employed by the Fault Finder is mentioned 
throughout this paper. 

LAN Troubleshooting 
For the last ten years LAN (local area network) trouble- 
shooters have relied on LAN protocol analyzers that provide 
a variety of decode measurements, statistical measure 
ments, and active measurements. This is a manual process 
that depends on the user's knowledge of the instrument, the 
network, and typical problems that occur on that network. 
These analyzers require a user to interpret results and select 
subsequent measurements. 

LANs provide high-speed packet switching within buildings 
or campus facilities. They include CSMA/CD baseband net 
works, token ring networks, and broadband networks. This 
paper addresses Ethernet (IEEE 802.3) and token ring 
(IEEE 802.5) networks. LANs are challenging in their trou 
bleshooting requirements because they operate at high 
speed, problems emerge and escalate in real-time, and the 
environment is very complex. Problems can result from 
poorly architected networks, improper device configura 
tions, faulty cabling or connections, broken devices or 
printed circuit cards, or incompatible software. A typical 

LAN can have several network operating systems and proto 
col stacks. Troubleshooting a network problem requires 
integrating pieces of data or clues from a variety of sources 
and using the acquired data to hypothesize and prove prob 
lems. Problems that do not cause hard failures but instead 
only cause performance problems may often go undetected. 

Network diagnostic tools have evolved in the same way as 
networks. Early diagnostic tools included workstation utili 
ties, cable measurement instruments, and simple protocol 
analyzers that provided decoding of protocol packets. Net 
work troubleshooting requires sequencing through different 
measurements, using the results of one measurement to 
select and program the next measurement. As networks 
became more complex, the problems became more com 
plex. This increasing complexity created a need for more 
sophisticated tools to enable network managers to solve 
problems rather than relying on hit or miss solutions, or in 
some cases simply living with the problem. 

Network managers and technicians solve many problems by 
relying on knowledge of their specific network and its com 
ponents and by relying on their troubleshooting experiences. 
For example, a network technician can quickly identify a 
misconfigured node card by observing the card's receiver 
congested soft-error frames on the token ring network. 

Expert troubleshooters use a mental model or paradigm for 
troubleshooting. Some perform this at a decidedly conscious 
level by diagramming the troubleshooting process. Others 
perform it subconsciously, following "what feels right." In 
either case the same basic process is used. They start by 
making observations of the situation. It doesn't matter what 
problem is being solved, be it a ruptured appendix, a faulty 
carburetor, or a duplicate IP address â€” all troubleshooters 
(doctors, auto mechanics, and network managers) use the 
same process. They use these observations to formulate 

M a k e  
Observations 

Form 
Hypotheses 

No 
(Disproven) 

Fig. 1. The observe, hypothesize, and prove (or disprove) trouble 
shooting process used in the Fault Finder. 

October 1992 Hewlett-Packard Journal 1 1 
© Copr. 1949-1998 Hewlett-Packard Co.



hypotheses of what problems might exist. Then they per 
form tests to prove or disprove the hypotheses. Finally, once 
a problem is proved they remedy the situation. This model is 
shown in Fig. 1. 

Protocol analyzers offer a variety of measurements for solv 
ing problems. Decodes provide descriptions of individual 
packets on the networks. Statistical measurements provide 
overviews of network trends such as utilization, errors, and 
protocol use. Individual applications provide utilities for a 
variety of functions such as creating an active station list, 
reading the status of network adapter cards, and testing the 
media. These are powerful tools in the hands of an expert. 
However, these analyzers have two major shortfalls. First, to 
solve difficult problems an expert user is usually required. 
Second, they require human intervention and cannot com 
plete the troubleshooting task in an automated fashion. Arti 
ficial intelligence offers a desirable solution to both of these 
problems. It allows an analyzer to monitor the network con 
tinually for problems and log the results for later perusal by 
a network manager. It also provides the means to build the 
knowledge of many troubleshooting experts into a tool that 
is widely available to network managers. 

Automated Troubleshooting Using Expert Systems 
Artificial intelligence (AI) solutions that are declarative in 
format and conventional solutions that are procedural in 
format can be used together to solve networking problems. 
Expert systems (one branch of AI), in a broad sense, are 
programs that are designed to behave as a human expert in 
a particular field. Expert systems are particularly useful for 
problems like networking in which complete information 
about a problem is not known when the program begins 
execution. Expert systems gather additional, pertinent in 
formation as they execute. Conventional, procedural pro 
grams usually execute in a sequential fashion through a set 
of troubleshooting trees and can take more time and execute 
incorrect branches. Expert systems gather information after 
an event and use it to explore multiple problems in parallel. 

The requirements for an expert system troubleshooting tool 
are somewhat diverse. First and foremost the expert system 
must discover network faults and make observations about 
the network. A primary goal is to diagnose common network 
problems quickly, allowing the human user to concentrate 
on more difficult and obscure problems. To do this, the ex 
pert system must be cognizant of the network structure, the 
protocol environments, the diagnostic tools available, and 
the troubleshooting methods that will solve the problem 
quickly. Thus, an expert system tool for network trouble 
shooting must be able to do the following: 

â€¢ Measurement Interface: 
o Perform diagnostic functions such as generating station 

lists, testing connectivity, and performing loopback tests 
o Confirm the existence of a hypothesized fault by executing 

active measurements such as token ring station adapter 
status 

â€¢ Automated Operation: 
: Monitor the network for real-time problems as opposed 

to gathering information and postprocessing it in a batch 
fashion 

â€¢ In the a of  computer programs, procedures tel l  a system speci f ical ly how to do a task 
and declarations tell a system generally what to do. 

Execute in an automatic, unattended fashion to solve 
intermittent faults, monitoring suspect rings or segments 
continuously 

> Ease of Use: 
Provide the user with an interpretation of data by suggest 
ing actions, drawing conclusions, and explaining advice 
Provide an audit trail of suspected problems, measure 
ments executed, and problems found to educate the user 
and to suggest possible problems that the expert system 
could not solve 
Generate alarms and log data to notify the user of proven 
faults and provide the necessary information to prove that 
the problem exists 
Incorporate user inputs by including information that 
the user already suspects about the network (such as 
performance problems) 

Topology: 
Gather and incorporate network topology information 
Gather error information that is being reported on the 
network and learn about the configuration of the network 
Gather and incorporate network baselines to determine 
what is normal behavior on the network and compare the 
current operation against normal behavior. 

It is critical that an expert system that augments a user's 
troubleshooting methods behave in a manner that the user 
can understand. Making observations, forming hypotheses, 
proving faults, and determining actions to take are critical 
troubleshooting steps that a network manager can under 
stand and relate to. 

Note that expert system tools could also be used to optimize 
performance, analyze network accounting information, per 
form network management functions, audit for security 
violations, and provide information for network planning. 
However, in this article we are only concerned with an ex 
pert system tool whose purpose is to diagnose operational 
faults on a local ring or segment of the network. 

The Fault Finder 
The Fault Finder is an expert system that executes as a soft 
ware application on the Network Advisor family of prod 
ucts. It uses troubleshooting methods that are modeled after 
expert users in the field, applying knowledge of known net 
work problems. It programs and executes measurements in 
the same way that an expert user would, taking advantage of 
the powerful measurement set of the Network Advisor. 

The Fault Finder was designed to provide the user with a 
high degree of interaction with the instrument and a detailed 
view of the activities of the Fault Finder as it attempts to 
solve a problem. This was considered critical because many 
network problems cannot be diagnosed to completion. In 
these cases it is important to give the user an audit trail and 
provide as much information as possible that might be perti 
nent to solving the problem. For example, suppose the Fault 
Finder suspects a broken transmit wire on a network inter 
face card with address 10005A74624A, but this suspicion 
proves to be false. The fact that the Fault Finder was inves 
tigating a potential problem on a certain station on the net 
work might be of interest to the network technician. The 
technician might be able to correlate the Fault Finder data 
with previous troubleshooting data and use this synthesis of 
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information to solve the problem. In addition to suspected 
problems, the Fault Finder records measurements it has 
executed. Such information may help an expert hone in on 
the real problem. This audit trail can also be used as an 
educational tool by the no\ice troubleshooter. 

The Fault Finder's main screen has three tiles that map 
directly to the observations, hypotheses, and proven faults. 
which are the mainstays of the expert's troubleshooting pro 
cess (see Fig. 2). The Fault Finder starts by running mea 
surements that provide observations for the troubleshooting 
process. These observations are posted to the first window. 
The rules in the knowledge base are executed and hypothe 
ses are formed. For example, if a statistical measurement is 
run that observes that the rate of broadcast frames on an 
Ethernet network exceeds a baseline, the Fault Finder will 
hypothesize several possible problems including a duplicate 
IP address and a misconfigured IP broadcast address. The 
Fault Finder will then perform further measurements such 
as a ping (internet control message protocol (ICMP) echo 
request) or an IP (internet protocol) decode to determine 
whether a problem exists. If the problem exists, it is posted 
to the Faults Found window, the window is turned red, and the 
user is notified with an audible alarm. 

The user can run the Fault Finder in several different modes. 
The single-loop mode runs once through the possible fault 
indicators looking for problems. It follows all results to a 
conclusion and then stops. The Fault Finder can run in a 
continuous-loop mode in which it repeatedly cycles looking 
for faults. The Fault Finder will also accept user symptoms 
to allow the user to direct the search by including what is 
already known or suspected about a network fault. Possible 
symptoms include poor performance, cannot connect, and 
suspected Novell problems. These symptoms cause the Fault 
Finder to focus its search initially on suspected problem 
areas. When appropriate, the Fault Finder will request the user 

to input the results of cable scanning measurements to aid 
in diagnosing physical media problems. 

The Fault Finder accesses Network Advisor measurements 
in the same way that the user would. For manual use the 
user is presented with a window containing a list of all the 
Network Advisor measurements sorted by categories. The 
Network Ad\isor allows the user to select multiple measure 
ments and execute them simultaneously. Each measurement 
includes a parameterization window for setting up the con 
figuration. For example, a ping measurement requires the 
user to specify the internet addresses for the Network Advi 
sor and the target node for the ping, and the timeout value 
(see Fig. 3). The Fault Finder automatically selects measure 
ments, provides parameterization, executes the measure 
ments, and obtains the results. A user performing this task 
manually can often make a mistake, which can lead to a 
false diagnosis and many hours of invalid and frustrating 
troubleshooting. 

Network troubleshooting depends on the concept of under 
standing normal behavior on a network and comparing the 
observed results with the normal expected behavior. The 
Fault Finder uses this same approach by keeping a baseline 
file that documents the expected values for the measure 
ments to compare with the actual results. Each measurement 
compares its actual results against the expected results in 
the baseline file. 

The Fault Finder uses prioritization and certainties to guide 
itself are the troubleshooting process. Prioritizations are 
implemented by assigning a severity and a frequency to each 
problem. This means that the Fault Finder will pursue more 
serious problems first. For example, a broken file server is a 
more serious problem than a broken node and will be inves 
tigated first. Certainties refer to the confidence levels as 
signed to the Fault Finder's results. Each Fault Finder result 
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Fig. 2. Fault Finder windows. 
Each window represents a stage 
in the troubleshooting process. 
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is rated as low, medium, or high (see the [High] designation 
given to the fault found in Fig. 2). Problems (faults) that can 
be conclusively confirmed are given a high confidence and 
problems that might be one of several possibilities and can 
not be diagnosed further are assigned a low confidence. 

The Fault Finder provides the user with a very fine level of 
control over the troubleshooting process. Allowing the user 
to interact with the Fault Finder was a key design objective. 
Expert systems that appear as a black box to the user are 
not appropriate for interactive network troubleshooting. 
The Fault Finder normally runs in an automatic mode cy 
cling from observations to hypotheses to proven faults. This 
is very useful for verifying the normal operation of the net 
work, or for a mode of debugging in which the user might 
look for intermittent problems on a network before they 
become catastrophic and degrade the network. The Fault 
Finder also provides several manual modes of debugging, 
which are useful for reactive troubleshooting to investigate 
specific failures. 

Once the Fault Finder has executed and discovered a fault 
on the network, the user must perform the final step of 
troubleshooting â€” correcting the fault. Simply identifying the 
fault is not enough if the user does not know how to remedy 
the problem. The Fault Finder includes a comprehensive 
explanation facility that explains the troubleshooting pro 
cess and describes the actions to be taken to fix the prob 
lem. Any line entry in any of the three tiles can be high 
lighted and selected to invoke the explanation facility. The 
explanation facility is implemented via the knowledge base. 
Each entry includes a definition, a reason, and an action. 
Fig. 4 shows an explanation window that explains the neces 
sary action to fix the problem of a station inserting in the 
network at the wrong speed. 

Fig. 3. Ping measurement 
window. 

Fault Finder Architecture 
The Fault Finder architecture (see Fig. 5) was designed with 
four main objectives. First, the Fault Finder must be able to 
operate the instrument in place of the user (the network 
manager). This means that the Fault Finder needs to initiate 
and receive results automatically from instrument measure 
ments in a knowledgeable way. Second, the Fault Finder 
must actively detect and investigate faults in a manner that 
will allow users to accept its conclusions and understand its 
actions. Third, the Fault Finder must be able to support 
knowledge about multiple protocol domains and adapt to 
varying target networks depending on the needs of our cus 
tomers. Finally, an inability to complete the diagnosis of one 
potential fault should not prevent the diagnosis of other 
potential faults. 

The inference engine provides the core knowledge process 
ing capability and sets the stage for relating the other com 
ponents in terms of their ability to provide information to 
support inferencing. The blackboard provides a mechanism 
for allowing multiple sources and sinks of information to 
cooperate and allows the user to get information about how 
data is synthesized in the Fault Finder. Measurements and 
user input provide two examples of information source 
modules that are not knowledge-based, but procedure-based. 

Inference Engine. An inference engine executes knowledge 
about a particular domain. During execution, high-level in 
formation is synthesized from measurement data, user input, 
and the knowledge base. The synthesis can be driven by the 
need to use the high-level data for some other purpose or 
the availability of sufficient lower-level data to complete the 

Sources generate information and sinks receive information. 
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Fig. 4. Fault explanation window. 

synthesis. In either case, the knowledge that is executed 
describes how the synthesis takes place. 

The Fault Finder uses a form of knowledge representation 
known as rules. These rules describe the necessary state of 
information to be able to synthesize higher-level informa 
tion. The rules in the Fault Finder have the following three 
main parts: 
The consequent (describes the information to be synthesized 
by the rule) 
The antecedent (describes the required preconditions that 
will allow synthesis to occur) 
The parameters (constrain how the inference engine is 
allowed to use the rule). 

The following rules are used to identify a station inserting in 
the network at the wrong speed. These rules show the con 
sequent, the problem definition, and the antecedent, which 
includes the preconditions (forward chaining) that must be 

Requests 
and 

Responses 
Control 

Inference 
Engine 

Results 

Rules 
Instrument 

Measurements  

Fig. 5. The Fault Finder's architecture. 

satisfied and the information needed to prove (or disprove) 
the hypothesized problem (backward chaining). 

Â¡Problem description 

problem! 
name(  Inser tWrongSpeedProb lem )  
n lsName(  ' Inser t ing  Wrong Speed '  )  
eventType! #FaultEvent )  
f requency!  50 )  
severity! 50 ) 
de f in i t ion !  'S ta t ion  inser t ing  a t  the  wrong speed means the  network  

in ter face card (NIC)  is  not  conf igured to  the proper  data 
rate for  the at tached local  r ing. '  )  

so lu t ion)  'Check the set t ings on the network  in ter face card  on the 
s ta t ions  be tween the  ind ica ted  fau l t  domain .  A f te r  conf igur ing  
the  ne twork  in te r face  card  cor rec t l y ,  re -cyc le  the  s ta t ion  power .  
For  example,  on an IBM Token Ring Network  16/4  Adapter  
(Network  In ter face Card) ,  check the set t ings o f  the d ip  swi tches.  
Dip swi tch 12 should be set  to  the appropr ia te data rate (4 Mbps 
dip swi tch On and 16 Mbps dip swi tch Off ) .  '  )  

hypoText !  'S ta t ion  may be inser t ing  a t  wrong network  speed in  domain  
o f  %?%address% and  %?%addressNAUN%.  '  )  

concText !  '%+%Stat ion  inser t ing  a t  the  wrong network  speed in  the  fau l t  
doma in  o f  %%?+%addressNAUN%%+% and  %%?+%address  
%%+%.%%-%Station 
not  inser t ing a t  the wrong speed in  the fau l t  domain o f  
% % ? ~ % a d d r e s s N A U N % % - %  a n d  % % ? - % a d d r e s s % % - % . %  '  I  

parameters !  
[  address  #node /hypothes is  "  "  ]  
[  addressNAUN #node  /hypo thes is  "  "  ]  

) 
) 

Â¡Forward Chaining Rule 

hypothesize!  

J h e s e  a r e  p a r a m e t e r s  
name!  hWrongSpeed )  
cost! 50 ) 
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conf idence!  100 )  
exp lanat ion!  ' I f  a  s ta t ion fa i ls  to  inser t  onto the loca l  r ing proper ly ,  

then i t  i s  poss ib le  the  s ta t ion 's  ne twork  in te r face 
card (NIC)  is  set  to  the wrong speed. '  I  

 
l og i cTex t !  ' I nse r tWrongSpeedProb lem!  ?address  ?addressNAUN )  : -  

Â¡Antecedent 
beacon ingMon i to r !  useBase l i nes  ? t ime  ?beaconAddress  

? b e a c o n A d d r e s s N A U N )  
pe r f o rm !  ? tmp1  ?s t "a t : pu t : " # l ancTokenR ingLas tBeacon ingAdd ress  

?beaconAddress )  
per fo rm!  ? tmp2 ?s t  "a t :pu t : "  # lancTokenRing l_as tBeacomngAddress  

N A U N ? b e a c o n A d d r e s s N A U N )  

s t reamingBeaconsMoni tor !  useBase l ines  ? t ime ?beaconSt reamAddress 
7beaconS t reamAdd ressNAUN ? )  

newAc t i veMon i t o r l  useBase l i nes  ? t ime  7add ressAc t i veMon i t o r  
? a d d r e s s N A U N a d d r e s s A c t i v e M o n i t o r  ? )  

topo logy  (asTokenRingNode [  ?addressSt r  ]  ?address  )  
topo logy  (asTokenRingNode  [  ?addressNAUNSt r  ]  ?addressNAUN )  

s topAI IMeasO 

) 

Â¡Backward Chaining Rule 

backward )  

 
name !  cWrongSpeed  )  
cost! 50 ) 
conf idence!  100 )  
exp lanat ion!  ' I f  a  s ta t ion fa i ls  to  inser t  onto the loca l  r ing proper ly ,  

then i t  i s  poss ib le  the  s ta t ion 's  ne twork  in te r face  
card (NIC)  is  set  to  the wrong speed.  The inser t ing 
s ta t ion wi l l  a t tempt  the inser t ion,  but  w i l l  be  unable  
to  synchron ize  w i th  the  incoming  s igna l  and  there fo re  
remove i tse l f  f rom the loca l  r ing .  The s ta t ion  may 
t ry  mul t ip le  inser t ions  be fore  remov ing  comple te ly . '  )  

Â¡Consequent 
logicText!  ' InsertWrongSpeedProblem! ?address ?addressNAUN ) :â€¢ 

Â¡Antecedent 
mdbParm ( txMeasT imeout  ? txT imeout  )  

per fo rm (  ?addressSt r  ?address  tokenRingAddress  )  

adapterMeas!  ?addressSt r  ? txT imeout  ? resu l t1  )  
s ize( ?result1 ?resultSize1 ) 
gt l  ?resultSize1 0 ) 

pe r fo rm (  ?addressNAUNSt r  ?addressNAUN tokenR ingAddress  )  

adap te rMeas !  ?addressNAUNSt r  ? txT imeou t  ? resu l t2  )  
s ize! ?result2 ?resultSize2 )  
g t (  ? resu l tS i ze20)  

The Fault Finder rules are modeled after PROLOG, so the 
consequent is simply a predicate that represents the goal or 
information to be synthesized. The predicate has a name 
that represents the type of information being synthesized 
and parameters that determine the specific information. For 
example, in the rule cWrongSpeed the predicate InsertWrong 
SpeedProblem tells us if the wrong speed is set on the adapter 
card at some address. This would be synthesized by gather 
ing data via the antecedent predicates and incorporating this 
data into the consequent. 

In the antecedents of the example rules, the conditions are 
simply ANDed together. Like IF statements in most program 
ming languages, other logical operations can be performed. 
The inference engine allows patterns to be specified in place 
of constants, and the condition may succeed multiple times 
depending on how many pieces of information match the 
patterns. This allows knowledge to be represented in a gen 
eral way, without knowing ahead of time how many situa 
tions might meet the criteria or the specific names or values 
of parameters. 

The execution of a rule can be driven by forward or back 
ward chaining operations. In forward chaining, the inference 
engine is presented with one or more network conditions 
(e.g., network is sluggish). This data will drive the execution 
of rules that depend on this data. In backward chaining, we 
start with a result or conclusion to be proved true or false 
(e.g., station inserting at the wrong speed) and work back 
through the rules (gathering information along the way) to 
find the problem or condition causing the given result. 

Blackboard. The blackboard allows multiple modules 
(sources and sinks of data) to work together. It also main 
tains an information structure that allows greater accessibil 
ity and storage of history data about how the information is 
synthesized or generated. 

The blackboard serves as a clearing house for all informa 
tion in the Fault Finder. It determines which module should 
be called to perform further information synthesis or data 
generation. When a module needs information to complete 
its synthesis, the module requests the information via the 
blackboard, and the blackboard determines which module 
can act as a source for that information. When data becomes 
available asynchronously, the data is distributed to those 
modules that could perform further synthesis based on the 
data. The modules are responsible for notifying the black 
board of their specific needs. 

Requests and Responses. In the Fault Finder's blackboard, 
requests for information are posted to initiate information 
synthesis. For example, if we want the Fault Finder to deter 
mine if a particular fault exists, a module will request infor 
mation about the fault's existence and then direct the Fault 
Finder to prove (or disprove) the fault. When the Fault 
Finder is observing the network, it may, on its own, decide 
to determine if a fault exists. The conditions that indicate 
the possible existence of a fault cause a request to be placed 
on the blackboard. 

Responses are the result of investigating a request. When a 
module completes processing a request, one or more re 
sponses are placed on the blackboard. Multiple matches of a 
pattern can generate more than one response. Each response 
has a level of certainty associated with it, which is deter 
mined from the certainty of the information it is based on 
and the confidence of the rule used to perform the synthe 
sis. In the end, a fault diagnosis can be weighed against 
other faults to determine a priority for correcting the faults. 

Hierarchical Data Abstraction. By tracking requests and re 
sponses exchanged via the blackboard, a hierarchy of infor 
mation created by the system can be maintained (see Fig. 6). 
The hierarchical orientation of the information facilitates 
both usability and programmability of the system. 
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Fig. 6. and data abstraction built by tracking requests and 
responses. 

Usability is enhanced by using the hierarchy to demonstrate 
to the user the steps taken to reach a conclusion, allowing 
the user to examine why a request was made in the first 
place. The modules that post requests and responses on the 
blackboard are required to provide human readable explana 
tions related to these postings. The explanations include 
how the information was generated, what the information 
means, and in some cases, what can be done about some 
problematic situation. Because users have control over what 
level of decomposition they desire to see, the hierarchy also 
protects them from the need to look at all of the details of 
the diagnosis. The user can select an interesting high-level 
item and pursue some of the low-level details of that item. 

The hierarchy is designed to eliminate dependencies between 
modules. This enhances the ability of knowledge engineers 
to represent knowledge in a way that is reusable and main 
tainable. Information from one source can be used by a vari 
ety of sinks that synthesize additional information. If a bet 
ter way of generating the information is determined, the 
source can be changed without having any impact on the 
sinks. This will allow the product to evolve over time as 
our understanding of the problem improves and as other 
capabilities of the product evolve. 

Procedural versus Declarative. The inference engine provides 
an environment for executing knowledge about diagnosis. 
This knowledge is represented in a declarative form using 
rules. The rules represent relationships between facts that 
transcend the procedures for proving those facts. However, 
parts of the diagnosis process require the ability to represent 
the procedural aspects of diagnosis explicitly. A procedural 
representation can be thought of in terms of a program writ 
ten in a language such as C, Pascal, FORTRAN, and BASIC. 

In the Fault Finder, the instrument measurements and user 
inputs represent procedural components of the network 
diagnosis process. The measurements embody complex pro 
cesses for gathering data about the network. The user inputs 
allow the user to perform a procedure that is not easily auto 
mated. The modules that provide this procedural capability 
have been designed to interface with the blackboard in the 
same way as the inference engine. 

Measurements. When a request for data on the blackboard 
can be satisfied by running an instrument measurement, the 
measurement is initiated and its results are posted on the 
blackboard. A simple example would be running an adapter 
status measurement. The data requested is the status of a 
particular interface card or the ability to contact the node 
associated with the card. The blackboard forwards this re 
quest to the measurement module where the adapter status 
measurement is handled. The result of running the measure 
ment is that the status and the basic ability to communicate 
with the node are posted as responses on the blackboard. 

When the results get posted, other modules that need this 
information can proceed with the synthesis of additional 
information. For example, the failure of a token ring station 
adapter status may be just one of the conditions of a rule 
that diagnoses some fault. When the station adapter status 
results are received by that rule, the rule may proceed with 
evaluation of the remaining conditions. 

User Input. User input is handled very similarly to measure 
ments. When information is requested from the blackboard 
that the user input module is capable of generating, the 
blackboard passes the request to the input module handling 
the user request. A description of the information and how 
to determine the correct response is provided as part of the 
user interface interaction. The user will perform the proce 
dures required to determine the correct response and then 
enter or select an answer. The module that requested the 
information will then proceed with its synthesis. 

Flow of Control. To satisfy the design objectives stated earlier, 
the flow of control within the system must be carefully con 
trolled. The inference engine has a number of control flow 
characteristics that can be controlled including forward and 
backward chaining, cost and confidence parameters for 
rules, and the urgencies of requests placed on the black 
board. One of the key characteristics of the inference engine 
is its ability to suspend threads of inference while some of 
its requests are blocked to pursue other threads of inference. 

Multithreaded PROLOG. When the inference engine requests 
information from the blackboard, there is no guarantee that 
the information will be available or that the request will be 
immediately selected as the next request to satisfy. The in 
ference engine must be able to suspend its inferencing re 
lated to a request until the response is available. Also, while 
waiting for a response, the inference engine must be able to 
initiate other chains of inference to satisfy other requests it 
receives. 

To make this possible, the blackboard allows context infor 
mation to be stored with each request. This allows a request 
er to resume synthesis when the requested data becomes 
available. When the blackboard notifies a module with the 
new information, the context information is returned to the 
module. For cases in which multiple responses match a re 
quest, the context information is copied to create an equiva 
lent but separate context for each response. This allows all 
of the backtracking capability of PROLOG to be provided in 
the blackboard environment. The context information also 
helps when presenting explanations to the user. 
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Prioritization. When modules request information from the 
blackboard, an urgency level is associated with the request. 
When the request becomes the one with the highest urgency, 
a module is selected to satisfy the request. The module with 
the lowest-cost technique for satisfying the request is selected 
as the exclusive provider of the response. Rules have mech 
anisms for passing default urgencies for new requests or for 
increasing or decreasing the urgencies of new requests. Other 
modules can set the appropriate urgency of requests for 
their form of synthesis. Each module must be capable of 
providing an estimate of its cost for any given request. 

Tying Components Together. The inference engine is the key to 
enabling the Fault Finder to operate the instrument in place 
of a human user. The rules in its knowledge base represent 
the ability to perform a diagnosis of some fault in a network. 
The inference engine requests information from the black 
board and causes measurements to be executed or user input 
to be solicited. 

The blackboard is the key to operating in a manner that is 
understandable and justifiable. Information is stored that 
allows the user to understand how information is synthe 
sized and why any particular step was taken. The hierarchi 
cal nature of the data allows the user to control the amount 
of information being presented. 

The inference engine and the Network Advisor measure 
ments allow the Fault Finder to adapt to a variety of proto 
col domains. A knowledge base with rules about Ethernet is 
combined with a measurement set for Ethernet to allow the 
Fault Finder to find faults on Ethernet networks. The same 
is true for token ring, TCP/IP, Novell, and other domains. 
The knowledge for the various domains can be combined 
to address more complex situations. 

The multithreaded nature of the inference engine and the 
context storage and prioritization mechanisms of the black 
board allow progress to be made in troubleshooting one 
problem while progress on another problem is impeded. In 
addition, the prioritization mechanism allows a new and 
more important problem to take precedence over a less im 
portant problem. This is important to avoid investigating 
small or petty problems while the potential for a disastrous 
problem exists. 

Finally, forward and backward chaining are strategically 
applied to create the observe, hypothesize, and prove behav 
iors. Forward chaining rules inform the blackboard that cer 
tain information can be used as soon as it becomes avail 
able. This sets up the measurements to be made during the 
observation stage. When the information becomes available, 
the rule decides if a problem might exist. If so, a request to 
investigate the problem is created. This request represents 
upgrading the state of the problem to the hypothesized level. 
The blackboard then attempts to prove or disprove the prob 
l em ' s  a  which  genera l ly  t r iggers  the  execu t ion  o f  a  
backward chaining rule. The backward chaining rule will 
request additional data, which will generally lead to measure 
ment execution and gathering of user input. As a result of 
this activity, a response is posted on the blackboard, and the 
fault's existence is proved or disproved. This process may 
happen for multiple problems during any given session and 
various certainties will be associated with each conclusion. 
Users can use these certainties and their own intuition to 

decide which problem to fix. Fig. 7 summarizes the activities 
that occur during this fault finding process. 

A Fault Finder Example 
The example in this section will show how the Fault Finder's 
expert system capability uses the observe, hypothesize, and 
prove paradigm to identify and solve a token ring network 
problem. 

A token ring LAN is configured as a logical ring. It consists 
of a set of computing devices, called stations, connected to 
the physical wire (see Fig. 8). The logical ring can operate at 
either 4 Mbytes/s or 16 Mbytes/s, and a station connected to 
the ring must be configured to the correct operating speed. 
The stations or spanning devices on the ring are connected 
to a multistation access unit (MsAU or MAU). These MAUs 
are usually combined in racks in wiring closets. A MAU port 
contains a shorted connection (using a relay). When a station 
is inserted into the ring the station applies a dc voltage to 
the media interface cable (or lobe) that attaches the station 
to the MAU. This voltage switches the relay in the MAU and 
serially connects the station into the ring without affecting 
the normal operation of the ring. 

The operation of a token ring network is composed of many 
functions. However, for this example only the beaconing 
function will be discussed. The beaconing function attempts 
to recover the ring from hard errors. Hard errors, such as a 
station inserting at the wrong network speed, usually occur 

Component 

Inference Engine 
(Forward-Chaining 
Rules) 

Blackboard 

Instrument 
Measurements  

Activity 

Indicate data that would 
ini t iate inferencing when 
it  becomes available.  

Ini t iate measurements 
that  wi l l  p rov ide  ind i  
cated data. 

Gather data and post it on 
the blackboard.  

Phase 

Observe 

Inference Engine 
(Forward-Chaining 
Rules) 

Inference Engine 
(Forward-Chaining 
Rules) 

Decide if  a fault might 
exist  based on avai lable 
data. 

Post requests to prove or 
disprove hypothesized 
faults. 

Hypothesize 

Blackboard 

Inference Engine 
(Backward-Chain ing 
Rules) 

Measurements  

Inference Engine 
(Backward-Chain ing 
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Call  upon appropriate 
modules to prove or dis 
prove faults. 

Request additional data 
to prove or disprove 
faults. 

Gather data and post it on 
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and post conclusions on 
the blackboard. 

Prove 

Fig. fault Rules, activities, and data flows occurring during the fault 
finding process. 
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Fig. 8. The token ring layout for the Fault Finder example. 

within the station and permanently impair the station's 
ability to communicate on the ring. 

When a station detects an error on its nearest active path it 
sends a beacon frame containing the address of its upstream 
neighbor and the type of error encountered. This isolates 
the fault domain of the problem. The fault domain consists 
of the transmit path of the upstream neighbor station, the 
intervening cabling system (cables, MAUs, repeaters), and 
the receive path of the station. If the upstream neighbor of 
the beaconing station copies eight of these frames it re 
moves itself from the ring and performs a self-test. If it 
passes the self-test the station will reinsert itself in the ring, 
and if it fails, the station will stay off the ring. If the self-test 
does not resolve the problem, the beaconing station will 
remove itself from the ring and perform a self-test. If it 
passes the self-test the station will itself reinsert in the ring, 
and if it fails, the station will stay off the ring. If the beacon 
ing condition persists even after both stations have removed 
and reinserted, the condition is considered a permanent 
beaconing condition and will require manual intervention to 
resolve. 

A station inserting at the wrong network speed is a common 
problem when a new workstation is installed on a token ring 
LAN. Specifically, a station inserting at the wrong network 
speed occurs when the network interface card is not config 
ured properly for the network. The following scenario de 
scribes how the Fault Finder is able to troubleshoot this 
problem. 

The scenario begins when a network manager is setting up a 
new Novell workstation on a token ring network and while 
attempting to attach to the server via the Novell netx com 
mand, the following error message is displayed on the 
workstation: 

"A File Server could not be found." 

This message does not necessarily point the network man 
ager in the proper direction to solve the problem and may in 
fact misdirect the manager. 

For this example, three rules and supporting predicates will 
be used from the knowledge base. These rules include the 
"inserting at the wrong speed" rule given earlier, and one rule 
each for broken or shorted transmit or receive wires. The 
following code shows a portion of the rule for the broken or 

;  Broken/Shor ted Rece iver  Prob lem 
Â¿Problem description 
problem! 

name!  BrokenShor tedRxProb lem )  
n lsName!  'BrokerAShor ted Rece iver '  )  
eventType! #FaultEvent )  
f requency!  50 )  
severity! 50 ) 
de f in i t ion !  The ne twork  in te r face  card 's  rece iver  i s  bad ,  the  rece iver  

minus lead is  broken,  or  the receiver  pa i r  is  shor ted 
together. '  )  

so lu t ion!  'Run a Network  Adv isor  Lobe tes t  on the lobe wi re  o f  the 
speci f ied s tat ion.  This  determines i f  the problem is  the 
wi re or  the s tat ion i tse l f .  I f  the lobe test  passes,  rep lace 
t he  ne two rk  i n te r f ace  ca rd  and  re inse r t t he  s ta t i on .  ' )  

hypoText !  'S ta t ion  %?%address% may have a  b rokenshor ted  rece iver .  '  
concTex t !  'S ta t i on  %?%address% %+%has%%-%does  no t  have% a  

broken receive minus lead or  shor ted receive pa i r .  '  )  

 C h a i n i n g  R u l e  
hypothesize!  

name!  hBrokenShor tedRx )  
cost! 50 ) 
conf idence! 90 )  
exp lanat ion!  ' I f  moni tor  content ion is  not  reso lved ( t imes out )  and 

the  r ing  s ta t ion  en ters  beacon- t ransmi t  mode and t ransmi ts  
a  beacon MAC f rame,  then i t  is  poss ib le  to  have a broken 
or  shorted receive pair . '  )  

l og icTex t !  'B rokenShor tedRxProb lem!  ?address  ?addressNAUN )  : -  

Â¡Backward Chaining Rule 
backward !  

name!  cBrokenShor tedRx )  
cost! 50 ) 
conf idence!  90 )  
exp lanat ion !  'The beacon ing  s ta t ion  w i l l  remain  in  beacon t ransmi t  

mode unt i l  the s ignal  is  restored by the removal  o f  the 
s ta t ion  w i th  the  b roken/shor ted  rece ive  pa i r  
th rough the  beacon- t ransmi t  au to  remova l  tes t .  Th is  remova l  
i s  ver i f ied  by  runn ing a  Sta t ion  Adapter  Sta tus  measurement  
to  determine i f  the  r ing  s ta t ion  wi th  the broken/shor ted 
rece ive pa i r  has actua l ly  been removed. '  )  

l og i cTex t !  'B rokenShor tedRxProb lem!  ?address  ?addressNAUN )  : -  

When the Fault Finder begins executing, the forward chain 
ing rules invoke measurements to monitor (observe) the 
network. The token ring commentator is an example of a 
monitor measurement. The token ring commentator pro 
vides a high-level abstraction of significant protocol events. 
Significant protocol events are defined as preludes to net 
work performance degradation or network failure. The to 
ken ring commentator allows the network troubleshooter to 
identify network problems without sifting through several 
pages of protocol decodes. 
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The following code shows a portion of the module for 
beaconing events, which are reported to the token ring com 
mentator when a network card inserts in the network at the 
wrong speed. 

;  Token Ring Network Events  

* * * * * * * * * * * * * * * * * * *  

event!  
n a m e !  b e a c o n M a c F r a m e s M o n i t o r  )  
n l sName!  'Beacon '  )  
eventTypel  #Protoco lEvent  ]  
f requency!  50 )  
severity! 50 ) 
de f in i t ion !  'A  Beacon MAC Frame is  t ransmi t ted  i f  a  s ta t ion  detec ts  the  

exp i ra t ion  o f  the c la im token t imer  dur ing the moni tor  
con ten t ion  p rocess .  The  s ta t ion  w i l l  b roadcas t  a  Beacon  MAC 
f rame iso la t ing the domain  to  i tse l f  and i ts  upst ream 
neighbor. '  )  

solut ion!  "  )  
hypoText !  'Mon i to r  fo r  Beacon MAC Frames '  )  
concTex t !  '%+%Sta t i on  %%?+%address%%+% t ransmi t t ed  a  beacon  

MAC f rame.  %%-%No beacon  MAC f rames  encoun te red .  % '  )  
parameters !  

[  useBase l ines  #s t r ing  /hypothes is  "  "  ]  
[  address #s t r ing  #conc lus ion "  "  ]  
[  add ressNAUN #s t r i ng  / conc lus ion  "  "  ]  

event !  
name !  beacon ingMon i to r  I  
n l sName!  'Beacon ing '  )  
eventType!  #ProtocolEvent  )  
f requency!  50 )  
severity! 50 ) 
def in i t ion !  'The r ing  is  cons idered beacon ing i f  a  s ta t ion  has t ransmi t ted 

8  consecut ive  Beacon MAC Frames.  '  )  
solut ion) "  )  
hypoText (  'Moni tor  fo r  the Ring Beaconing '  )  
concTex t !  '%+%Sta t ion  %%?+%address%%+% is  beacon ing  s ta t i on  

%%?+%addressNAUN%%-%The  r i ng  i s  no t  beacon ing%.  '  )  
parameters !  

event!  
name !  s t ream ingBeaconsMon i to r  )  
n l sName!  'S t reaming  Beacons '  )  
eventType!  #ProtocolEvent  )  
f requency!  50 )  
severity! 50 ) 
de f in i t ion !  'The r ing  s ta t ion  has been t ransmi t t ing  Beacon MAC f rames. '  )  
so lut ion!  "  )  
hypoTex t !  'Check fo r the  R ing  S t reaming  Beacons  '  )  
concTex t !  '%+%Sta t i on  %%?+%address%%+% is  s t reaming  beacons  a t  

s ta t i on  %%?+%addressNAUN%%-%The  r i ng  i s  no t  s t ream ing  
beacons%. '  )  

parameters !  

event!  
name !  newAc t i veMon i t o r  )  
n l sName!  'New Ac t i ve  Mon i to r '  ]  
eventType!  #ProtocolEvent  )  
f requency!  50 )  

severity! 50 I 
de f in i t ion !  The  new ac t i ve  mon i to r  ind ica tes  the  r ing  has  recovered  and 

is  proceeding wi th  normal  operat ion. '  )  
solut ion!  "  )  
hypoText !  'Check for  Ring Recovery '  )  
concTex t !  '%+%New ac t i ve  mon i t o r  i s  s ta t i on  %%?+%address%%-%No 

new ac t i ve  mon i to r  MAC f rames encounte red%.  '  )  
parameters !  

The rules are then blocked pending measurement results, 
which satisfy the rules' preconditions. Once the results are 
received they are posted on the blackboard. A network in 
terface card attempting to attach to a token ring network at 
the wrong network speed will cause a temporary beaconing 
condition on the ring. The token ring commentator measure 
ment will identify beaconing on the ring and abstract the 
beaconing condition into four different stages. The first 
stage, beacon, identifies that beaconing has been initiated 
on the ring. The second stage, beaconing, indicates that bea 
coning has occurred long enough for the upstream station to 
remove and perform a self-test. The third stage, streaming 
beacons, indicates that beaconing has occurred long enough 
for the beaconing station to remove and perform its own 
self-test. The fourth stage, catastrophic, indicates a perma 
nent beaconing condition. This particular beaconing condi 
tion causes the upstream station and the beaconing station 
to remove themselves from the ring. 

The token ring commentator measurement observes the 
first three stages of beaconing and posts the observations to 
the blackboard. The observations are displayed in the Fault 
Finder's Observations tile shown in Fig. 2. Following the bea 
coning condition, the token ring commentator measurement 
also observes that a new active monitor is elected. This ob 
servation is used by the Fault Finder to conclude that the 
beaconing condition was temporary and that the ring has 
recovered. Since the observations posted on the blackboard 
satisfy the preconditions specified for the three rules men 
tioned earlier (broken/shorted transmit wire, broken/shorted 
receive wire, and inserting at wrong network speed), the 
problems can be hypothesized. 

The problems hypothesized by the Fault Finder are a result 
of inferencing through the antecedent part of the rules. The 
possible problems are displayed on the Fault Finder's Possible 
Faults tile to show the user the current problems the Fault 
Finder is investigating (see Fig. 2). This feature is provided 
because the Fault Finder may have enough information to 
hypothesize a problem, but might not be able to prove that 
the problem exists. This may occur because: 
The Fault Finder cannot obtain the required information 
through measurements 
The Fault Finder cannot obtain the required information 
from the user 
The knowledge base does not have the ability to prove (or 
disprove) the problem. 

The hypothesized problems are prioritized to allow a more 
important problem to take precedence over a less important 
problem. Therefore, the Fault Finder will investigate the 
excessive ring length problem first because this problem 
could potentially effect the entire network while the other 
problems are most likely localized to a single user. 
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The Fault Finder is able to obtain information on its own 
about the state of the network to prove (or disprove) hy 
pothesized problems. This is performed by the rules' re 
questing information (\ia the inference engine) from the 
blackboard. The blackboard requests the data from the 
appropriate measurement modules and the results of the 
measurements are posted on the blackboard to allow the 
inference engine to continue and eventually prove (or 
disprove) the hypothesized problem. 

In this example the hypothesized problems (broken transmit 
wire, broken receiver wire, or inserted at the wrong speed) 
are proved (or disproved) by determining which device (if 
any) was beaconed off the ring as a result of the problem. 
This is determined by transmitting a token ring adapter sta 
tus MAC frame to the suspected devices. The addressing 
information to determine which devices to query is taken 
from the observations made during the temporary beacon 
ing condition. The rules will execute and configure the 
adapter status measurement to obtain the required status 
information from the device. The response or lack of a re 
sponse from the adapter status measurement will be posted 
on the blackboard and used for further inferencing. In this 
particular example, neither of the devices was permanently 
removed from the token ring network. Therefore, the Fault 
Finder will conclude that there was not a broken transmitter 
wire or a broken receiver wire, but that a station with the 
wrong speed was inserted between the specified upstream 
and downstream stations. Notice for this particular problem 
the confidence level is indicated as [High] as shown in Fig. 2. 

When the Fault Finder discovers a problem on the network, 
the user is notified. This notification provides the user with 
information about the problem, a definition of the problem, 
and the reasoning and required actions to solve the problem. 
This information is provided in the Fault Finder's explanation 
facility shown in Fig. 4. For a station inserting at the wrong 
speed, the required actions tell the user to change the set 
ting on the network interface card, and provide an example 
of how to perform this task on an IBM Adapter II network 
interface card. 

This problem (inserting at the wrong network speed) fits 
well into the observe, hypothesize, and prove paradigm. The 

Fault Finder can observe or passively monitor the network 
for significant events to hypothesize possible problems. The 
real strength of the Fault Finder, however, is its ability to run 
instrument measurements automatically, to obtain status 
information from different network devices, and to prove 
that a problem exists. 

Conclusion 
Protocol analyzers provide powerful measurement capabil 
ity that allows experienced LAN troubleshooters to solve 
many network problems. The Fault Finder provides the next 
generation in LAX troubleshooting tools. It automates the 
process of troubleshooting, allowing network managers to 
focus their efforts on those problems requiring human atten 
tion. It incorporates the knowledge of expert troubleshoot 
ers into its rule base, allowing network managers to take 
advantage of a powerful problem solving instrument. Finally, 
the Fault Finder uses the same troubleshooting model as 
expert troubleshooters â€” observe, hypothesize, prove. 
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The User Interface for the HP 4980 
Network Advisor Protocol Analyzer 
A PC-based, object-oriented software architecture forms the underpinning 
for the HP 4980 Network Advisor's user interface. 

by Thomas A. Doumas 

The HP 4980 Network Advisor protocol analyzer's user inter 
face provides LAN troubleshooters with a clear, concise, and 
consistent presentation of measurement results. The user 
interface is built on a graphical, window-based system. The 
user interacts with a number of system windows to access 
and control the features of the instrument. This interaction 
is through pull-down menus, pushbuttons, list boxes, and 
dialog boxes associated with specific features. Support for 
servicing these user interactions is provided by a layer of 
software called the measurement architecture. The measure 
ment architecture software and other system software are 
collectively called the general-purpose environment. The 
general-purpose environment software is written in the 
object-oriented Smalltalk language and runs on a PC. 

Working in consort with the general-purpose environment is 
another environment called the analysis and real-time (ART) 
environment, which runs on a RISC-based hardware platform 
and provides the services for interfacing to the Network 
Advisor's front panel and the network under test. A high-level 
view of the general-purpose and ART environments is shown 
in Fig. 1. The ART environment is described in detail in the 
article on page 29. 

The following features are provided through the Network 
Advisor user interface: 

H a r d w a r e  S o f t w a r e  

lnte!386SX-Based PC 

AMD29000 
RISC-Based 

Analysis System 

IEEE 802.3 â€¢ IEEE 802.5 
N o d e  N o d e  

I n t e r f a c e  â € ¢  I n t e r f a c e  
C a r d  C a r d  

User Interface 
Window System 
Measurement  Archi tecture  
System Services 
Measurement  Objects  

IEPC 

Protocol  Modules 
Acquis i t ion Modules 
Processing Unit  

General-  
Purpose 
Environment 

Analysis and 
Real-Time 
Environment 

Fig. 1. A high-level view of the main hardware and software and 
components of the Network Advisor. IEPC is the interenvironment 
process communication channel. 

' Simultaneous execution of measurements. The user can 
execute multiple measurements simultaneously. For exam 
ple, users can start a traffic generation measurement to 
produce a specific network load and simultaneously 
monitor the frames with protocol decodes and statistics 
measurements. 
Graphical display. The Network Advisor user interface is 
enhanced by a graphical display. This 16-color, VGA display 
system provides a platform for displaying statistical infor 
mation with presentation tools such as gauges, graphs, and 
bar charts. The network statistics measurement provides the 
user with line graphs correlating multiple network parame 
ters and gauges that change color to indicate threshold 
events. 
Consistency across measurements. All Network Advisor 
measurements are controlled with a common user interface. 
The user executes, configures, pauses, and stops all measure 
ments with the same mouse clicks or keystrokes. Each mea 
surement has a set of standard menu items for controlling 
these common features. 
User-definable measurement presentation. The Network 
Advisor presents the measurement display by grouping the 
measurements into categories and subcategories. The stan 
dard set of categories is first indexed by protocol stack and 
then by measurement type (e.g., statistics, timing, perfor 
mance, etc.). Users can create their own categories and sub- 
categories containing their choice of measurements. This 
feature allows the Network Advisor measurement selection 
window to be customized for specific tasks. Since measure 
ments can appear in multiple categories, new categories do 
not interfere with existing categories. 
Online help system. The Network Advisor software includes 
an online help system. The help system provides help on the 
use of Network Advisor features and help on specific data- 
communications topics such as network protocols. 

Measurement Organization 
The Network Advisor presents the user with functionality 
oriented around the measurements on the network. Some 
examples of measurements include individual protocol de 
codes, protocol stack decodes, traffic generation, network 

* A protocol stack is a group of protocols that work together to provide a service for network 
communication, and represents one possible choice of protocols for the seven layers of the 
ISO OSI Reference Model. For example, the ARPA stack defines the protocols FTP, SMTP, 
and telnet for the application layer, TCP for the transport layer, IP for the network layer, and 
various protocols (e.g., IEEE 802.3 and 802.51 for the data link layer, and leaves the other 
layers undefined. 
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performance summary statistics, automatic node discovery, 
and the node generating the most errors. 

Traditional protocol analyzers provide access to their func 
tionality by grouping features into a small number of prede 
fined, fixed functional areas. For example, the HP 4972A LAX 
protocol analyzer groups functionality into the broad areas 
of decodes and statistics. The statistics functionality group 
is composed of a complex menu tree which gives the user 
access to features as diverse as network performance statis 
tics, connection matrices, and traffic generation. This menu 
tree presents the user with a variety of parameterization 
menus along the way. For example, the decodes functional 
ity group presents the user with parameterization menus for 
selecting protocols, protocol layers, and display formats. 

The Network Advisor's functionality is accessed through 
measurements. Each measurement is self-contained and has 
a set of configurable parameters that are specific to that 
measurement. All measurements use the same user inter 
face style for parameterization. The presentation of the mea 
surements is controlled by the categories and subcategories 
that act as view filters. If the standard categories are not 
intuitive or useful for a particular situation, the user can 
create custom categories. 

This Network Advisor measurement organization provides 
the user with presentation functionality. Users can select the 
measurement needed without distractions from unrelated 
data. This is an improvement over the collections of func 
tionality in fixed pieces and the different user interfaces 
provided in traditional protocol analyzers. Fig. 2 depicts this 
difference in instrument organization. The upper portion of 
the figure depicts the Network Advisor concept and the 
lower portion depicts traditional instrument organization. 

General-Purpose Environment 
The software architecture for the general-purpose environ 
ment is shown in Fig. 3. 

The main areas in the general-purpose software environment 
include: 
Applications. These are the modules that provide features 
such as protocol decodes and statistics to the user and 
handle the displays and input from the user. 
Frameworks. These are groups of classes that provide the 
foundation on which many of the user interface features are 
built. 
Measurement Architecture. This is a set of global objects 
and classes that control shared resources and provide access 
to system functions. Shared resources include the hardware 
in the ART environment used to capture and hold data 
coming from the network under test. 

The software in the general-purpose environment is imple 
mented in the object-oriented Smalltalk language (see 
"Object-Oriented Design and Smalltalk" on page 24). 

User Interface Frameworks 
The Network Advisor user interface is built using multiple 
layers of frameworks. A framework is a group of classes 
that implement commonly used features such as printing, 
window system control, and paging and searching through 
data. A framework is generally used without modification by 
the layer of software above it. In some cases the framework 
classes are subclassed for slight behavior modifications. 
Classes implemented at higher layers of the system do not 
"tunnel" through lower layers to access layers below their 
adjacent layer. This rule enhances the maintainability of the 
system. 

Network Advisor's 
Measurement Organizat ion 

Measurement  Topics 

Decodes 
Summary Statistics 
Timing 
Performance Devices 
User-Def ined Measurements 

Tradi t ional  Measurement  
Organization 

Decode Applicat ion Statist ics Application Canned Tests 

Fig. 2. Differences in measure 
ment organization between tradi- 
tiunal protocol analyzers and the 
Network Advisor. 
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Canned Tests:  ARP, Ping,  Traff ic Generat ion,  
Commentators, Active Station List .  

S u m m a r y  S t a t i s t i c s ,  N o d e  E t h e r n e t ,  T o k e n  R i n g ,  
S t a t i s t i c s ,  D i s c o v e r y  .  .  .  T C P ,  I P ,  S N A  .  .  .  

Canned Test  Framework Stat ist ics Framework Decode Framework 

M e a s u r e m e n t  A r c h i t e c t u r e :  S e t u p ,  S e l e c t ,  P a r m M a n a g e r ,  R e s u l t V i e w ,  N o d e l i s t ,  M e a s u r e m e n t ,  M e a s u r e m e n t P r o x y ,  
MeasurementDatabase ,  EventLog  . . .  

GAFW: ART Interface, Window System, Graphics,  Processes, Event Dispatchers,  Database, Help System 

Smalltalk V/286 

DOS Services 

Hardware Platform: PC, ART Interface, ART 

Fig. 3. The software architecture 
for the general-purpose environ 
ment. IEPC is the interenviron- 
ment process communication 
channel. 

Generic Application Framework (GAFW). The core system 
services of the Network Advisor are provided by a group 
of classes called the generic application framework. These 
classes implement the windowing system, ART interface, 
error handling, and so on. 

Specific Application Frameworks. The specific application 
frameworks provide a set of classes to implement a class of 
measurements that have common features. The decode 
framework is a specific application framework upon which 
all the protocol decode measurements are built. This frame 
work is different from the others because it supports a post 
processing mode of operation. In addition, the decode 
framework provides a data throttling protocol for run-time 
decode displays that are not required to maintain real-time 
display of received frames. The statistics framework, which 
is another specific application framework, integrates multi 
ple statistical measurements into a single composite mea 
surement. It provides different ways of showing statistical 
data such as generic graphs, gauges, pie charts, and bar 
charts. It also provides configuration capability for each 
component measurement. 

Canned Test Framework. The canned test framework supports 
all of the canned tests such as ARP, ping, traffic generation, 
protocol commentators, and active station list. This frame 
work focuses on programmatic control of the front-end data 
transmission interface and real-time display of results. 

Measurement Architecture 
The measurement architecture is a software platform that 
defines and implements a set of standard features and inter 
faces to system functions. These standard features and in 
terfaces are implemented as global objects and thus are 
available to all measurement objects in the Network Advi 
sor. Software developers can use the classes of objects in 
the measurement architecture as they are, or modify their 
behavior with subclassing. The objects in the measurement 
architecture provide the classes to create the following user 
interface features. 

* A protocol in which the decoder sends a message to the ART environment to retrieve the next 
eight frames of data. 

1 ARP address resolution protocol) is used to find the physical address for a specific IP address 
in an ARPA prptocol stack. 

Object-Oriented Design and Smalltalk 

Object-oriented designs are based on the data that is present in the system. The 
object-oriented model defines objects that encapsulate data and provide all de 
fined modularized (methods) that act on the data. The entire system is modularized 
on the designs, of the data structures. This is in contrast to procedural designs, which 
focus on algorithms and features. The main benefit of the object-oriented approach 
is that the data provides more stability over time than algorithms because only the 
methods in the object can modify data, whereas with procedural designs, data 
structure changes and global access to data affect the stability of data. 

The major elements of the object-oriented model are: abstraction, encapsulation, 
hierarchy, and modularity. Abstraction is defined as the description of a system 
that focuses on the details that are significant while hiding the details that are not 
significant. Abstraction describes the external behavior of the object or system. 
The concept of encapsulation means that the data structures of an object are 
accessed only through a publicly defined interface to the object and that the 
Implementation details of the object are hidden. This gives the programmer the 
freedom to reimplement the object for improving performance or repairing defects 
without worrying that some user of the object is dependent on the specific data 
structure or the implementation of the methods that operate on the data. The 
hierarchy of the object-oriented design is an ordering of the abstractions that define 
the system. In Smalltalk, the class hierarchy defines which classes can inherit 
functionality. For example, the class Dictionary inherits from the class Collection. 
Modularity refers to abstractions grouped into discrete units. The modules should 
be loosely coupled so that changes in one module will not require modification in 
others. 

In Smalltalk, abstractions are defined in classes. A class contains data and methods 
that operate on the data. A program is built by creating instances of the classes 
and tying the instances together to create the desired solution. 

To implement the user interface and the other classes in the general-purpose 
environment, we used SmallTalk/V28B from Digitalk Inc., and a development 
environment called Envy/Developer from Object Technology International. Envy/ 
Developer provides a network-based (Novell Netware) team programming environ 
ment control, tools for tasks such as source code control, revision control, debugging, 
and software production. 
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Features Selection. The user interface measurements window- 
presents the user with all of the available measurements. 

The menu items in the measurements window give the user 
the ability to open a measurement to run, to configure a mea 
surement, to stop all measurements, and to run multiple mea 
surements. In addition to measurement control, the user can 
import measurements created on another Network Advisor. 

Measurement Configuration. The Network Advisor provides a 
set of user-modifiable parameters to control specific features 
of a measurement. These parameters can affect the presen 
tation of data, and in some cases they can affect data trans 
mitted on the network. Users access the configurable param 
eters of measurements with the Config menu item, which 
appears in each measurements window. The parameters are 
available to developers via a programmatic interface. 

User-Defined Measurements. The Network Advisor measure 
ments can be cloned into new, user-defined measurements. 
This feature allows users to configure a measurement for a 
specific task and then create a new measurement using the 
same configuration. 

Display Management. All window objects use the display 
manager to display themselves when they are ready. The 
display manager keeps track of the location of all windows 
and suggests a size and placement for new windows. The 
display manager provides a similar function for the icon area. 

Measurement Control. All measurements can be started, 
stopped, or paused. In addition, all measurements can mod 
ify the source of data (e.g., capture buffer or the network 
under test). 

Intermeasurement Communication. Because the results of one 
measurement might be of interest to another measurement, 
the measurement architecture defines a standard commu 
nication path for intermeasurement communication. The 
requesting measurement only needs to register for results 
using a programmatic interface to receive the results from 
another measurement. 

Database. The measurement architecture provides a data 
base facility for the Network Advisor. Any measurement or 
system function can define and use the database facility. The 
node list browser is an example of database use. 

Interface to Analysis System. The ART and general-purpose 
environments interact through the interemironment process 
communication (IEPC) channel. The IEPC channel manages 
bidirectional communication between the ART and general- 
purpose environments by buffering and dispatching mes 
sages in both directions. All commands to the ART environ 
ment are Forth strings (see "The Forth Interpreter" below). 
The measurement architecture provides a high-level inter 
face that allows programmers to build a Forth command 
and send it to the ART environment with a single message. 
The high-level IEPC interface supports simple commands 
(status response only), complex commands (multiple re 
sponses), command response timeouts, error handling, and 
priority commands. When a command is sent, an object in 
the general-purpose environment is dynamically assigned an 
IEPC port number. This number identifies the sender of the 
command and the receiver of the response. Communication 
with global objects is supported with fixed destination 
ports. 

The Forth Interpreter 

In the Network Advisor, the user interface software on the PC communicates with 
a Forth The in the analysis and real-time environment on the pod.* The 
Forth Commands is used to configure and control the ART environment. Commands 
such as start and stop are sent to the ART environment as ASCII Forth strings. 
These strings are passed to the Forth interpreter for execution. 

Since the ART environment is written in C++ and the Forth interpreter is written in 
C, we code. a way to interface the Forth interpreter to the C++ code. We decided 
that the best way to do this would be a call to a virtual function. This would allow 
objects to inherit Forth interfaces. Since most objects in the system are derived 
from was C++ class we defined as the root class, we decided that this was the place 
to define the virtual function. We also wanted to modify the Forth source code as 
little as possible. 

We defined a global function callFoithFuncd that takes two parameters: a pointer 
to an written and a pointer to the Forth stack. This function is written in a C++ 
module and can call the virtual function. It casts the object pointer to a root 
pointer and calls the virtual function forthFuncO passing the stack pointer. By 
indexing the stack pointer, parameters can be passed between Forth and C++. 

By convention the first element of the stack is used as an index to tell forthFuncO 
what the to perform. If forthFuncO does not implement the requested func 
tion, creates an call forthFuncO in the inherited class. This call chaining creates an 
inherited Forth interface. 

At system initialization, the ART environment stores a pointer to its global record 
in a Forth variable. This global record is an object derived from the root class. The 

1 A pod is a and module for the Network Advisor that contains the interface hardware and 
the real-time analysis processor system. 

forthFuncO for this class implements functions such as instantiating an applica 
tion, returning pointers to other objects in the system, and configuring system 
parameters. Supplying Forth with this one pointer allows it to make calls and gam 
access to the rest of the system. 

Development Phase 
The Forth interpreter was also used in the development environment. The ART 
environment and its applications were developed on workstations. The front-end 
code was simulated using a disk file. Frames were read out of the file and passed 
to the flow The Forth interpreter was used to control the flow of these 
frames to the applications. 

The Forth word play took the number on the top of the stack as the number of 
frames play. play to applications. The Forth word step was defined to do a 1 play. 
This allowed frames to be played into the ART environment to examine the internal 
data structures between frames. 

The Forth interpreter was also used as a debugging tool in the target environment. 
A user interface to the Forth interpreter called Forth Window was created on the 
PC. From this window, Forth commands could be sent to the Forth interpreter on 
the pod. This allowed us to get and set system variables, dump parts of memory to 
the debug port, query memory use, and so on. 

Robert L. Vixie 
Development Engineer 
Colorado Telecommunications Division 

The play command tells the ART environment how many frames to process. 
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Error Handling. The measurement architecture provides a 
variety of automatic error handling mechanisms. Errors gen 
erated by the ART environment, applications, system func 
tions, Smalltalk, and DOS are all handled by these mecha 
nisms. In many cases the Network Advisor can recover from 
an error and continue executing measurements. In other 
cases, the Network Advisor aborts itself and exits to DOS. In 
this case, data is saved in an ASCII file on disk so that it can 
be examined later to find the defect. 

Hardware Configuration. The analysis hardware is controlled 
by the analyzer setup interface. The user can modify the 
hardware configuration via the setup window. Measurement 
objects can access the same parameters through a program 
matic interface. The hardware configuration parameters are 
categorized into two groups: network interface independent 
and network interface dependent. The network interface 
independent parameters include capture buffer size, capture 
mode (circular or run until full), and capture filters (capture, 
exclude, or stop). The network interface dependent parame 
ters include configuration commands for the IEEE 802.3 
Ethernet network interface card and the IEEE 802.5 network 
interface card. 

Node Lists. The node list feature allows the user to create 
and maintain node lists. The node lists are used by most 
measurements in the system to map physical network ad 
dresses to mnemonics that are meaningful to the user. The 
node list can be created automatically with a measurement 
object that monitors the network traffic to discover nodes. A 
set of utilities converts node lists from a variety of formats 
into Network Advisor format. 

Event Log. The event log is a database of significant events 
that the Network Advisor has observed. These events are 
grouped into the following categories: protocol, threshold, 
topology, fault, and instrument. 

Native Language Support (NLS). The Network Advisor soft 
ware has built-in support for localization. The text displayed 
throughout the Network Advisor is provided by NLS dictio 
naries. Through the use of NLS dictionaries, the text can be 
localized without modification of the code. 

PC Configuration. The Network Advisor software provides a 
set of configuration functions that are available to the user 
via the PC configuration window. These functions allow the 
display timeout to be set, measurements to start automati 
cally when the analyzer is invoked, and DOS file operations 
to be carried out. 

Measurement Execution 
When the user requests via a menu selection to see certain 
measurement data, a number of objects are instantiated to 
perform the measurement, store the data, and display the 
results. Fig. 4 shows the system before a measurement object 
is instantiated and Fig. 5 shows the situation after a measure 
ment object is instantiated. Some or all of the following 
events take place during measurement execution: 

â€¢ To execute a measurement, the user selects the measure 
ment in the MeasurementSelectView window and then chooses 
the Run menu item from the MeasurementSelectView menu (Â® 
in Fig. 5). 

M e a s u r e m e n t S e l e c t V i e w  

M e a s u r e m e n t S e l e c t M o d e l  

A n a l y z e r S e t u p  j  S  S e r v i c e R e q u e s t  

M a i n D i s p a t c h e r  

Local (Temporary) 
Objects 

Global Objects 

Pointer Linkages 

Fig. 4. Initial condition of ob 
jects in the system before the 
execution of a measurement. 
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User Selection 

( T )  

M e a s u r e m e n t S e l e c t V i e  

A n a l y z e r S e t u p  j  â € ¢  S e r v i c e R e q u e s t  

M a i n D i s p a t c h e r  

Local (Temporary) 
Objects 

Global Objects 

Pointer Linkages 

Possible Linkages 

Fig. 5. Linkages and interactions 
when a measurement object 
(Measurement_Obj_C) is created to 
perform the measurement 
operations. 

â€¢ After Run is selected, a message is sent to the Measurement- 
SelectModel indicating which measurement to run (Â© in Fig. 
5). The MeasurementSelectModel holds a list of objects that act 
as proxies for the actual measurement object. The proxy for 
a measurement object holds the name of the class to instan 
tiate for the specific measurement. It also holds the name of 
a measurement file that contains the data for the measure 
ment. The proxy instantiates the appropriate class and then 
sends an initialize message to the instance (Â® in Fig. 5). 
From here, the measurement object takes over and com 
pletes its own initialization. The measurement object reads 
its database from disk and creates the MeasurementDataBase 
object (Â® in Fig. 5). The MeasurementDataBase holds the 
definitions and current values of the user configurable pa 
rameters for the measurement. In addition, the Measurement 
DataBase contains the specification for the view that the 
measurement object is to build for displaying the measure 
ment is With this information the ResultView object is 
created (Â® in Fig. 5). 

â€¢ The to interacts with the MeasurementDataBase to 
allow the user to configure the measurement (Â® in Fig. 5). 
Examples of configurable parameters include the sample 
period for a statistics measurement, timestamp mode for a 
decode, or percent utilization from a traffic generation 
measurement. The ParmManager object is instantiated 
when the user requests the configuration window for the 
measurement object. 

â€¢ A measurement object might require that the node list be 
loaded from the disk-based databases into memory. If this is 
the case, then the measurement object sends a message to 
the global node list object to accomplish this. 

â€¢ The measurement object might also post events to the event 
log as part of its startup sequence. An example would be the 
time the measurement started. 

â€¢ Some measurement objects automatically configure to cer 
tain hardware or ART states. For example, the decode mea 
surements will start the data capture if the data source indi 
cated in AnalyzerSetup is the network under test. If the data 
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source is the capture buffer, then the decode measurements 
will request enough frames to fill the ResultView. The statistics 
measurements warn the user if the data source is not the 
network under test since statistics only execute in real time. 

1 After the measurement object is linked into the system and 
fully initialized, it will start executing. To do this, the mea 
surement object sends a message to AnalyzerSetup and re 
quests that the front-end measurement be started (Â© in Fig. 
5). AnalyzerSetup will get a unique handle (identifier) for the 
measurement and start the data capture. AnalyzerSetup keeps 
track of which measurement objects have requested a start 
measurement so that when the measurement objects re 
quest a stop, the front end will not be stopped until all mea 
surement objects have requested a stop. In this way multi 
ple measurements can run and stop independently. 
Measurement objects can send messages to the ART envi 
ronment using the ServiceRequest object, which provides a 
high-level interface for sending Forth messages and receiving 
responses from the messages. 
When the user chooses to close a measurement, the mea 
surement object breaks all of its references to system re 
sources. This process includes removal of the ResultView 
object window from the window scheduler causing the win 
dow to disappear. The Smalltalk memory manager will then 
be able to recover the newly available memory. 

Process Model 
The process model is an important part of the general- 
purpose environment because it supports the simultaneous 
execution of multiple measurements while still providing a 
responsive user interface (see Fig. 6). Smalltalk supports 
separate processes with their own stacks of send messages. 
Processes all run within the same Smalltalk memory so they 
are more like threads than real processes with memory 
protection. The process scheduler is not time preemptive 
but rather selects a new process to run when an interrupt 
occurs or when the currently running process blocks, yields, 
or finishes. 

The general-purpose environment runs two distinct pro 
cesses. One process is the user interface process and the 
other is the background process. The user interface process 

User Interface Process 

To 
Application 

Background Process 

Background 
Semaphore 

Background 
Process 
Queue 

Fig. 6. Process model and dispatcher. 

runs at a higher priority than the background process. The 
relative priorities are set this way so that the user interface 
can interrupt the background process and provide the user 
interface with good responsiveness. 

The user interface process processes all keyboard, mouse, 
and timer events. It also blocks on a keyboard semaphore 
until it is awakened by the keyboard interrupt service routine. 

The background process processes events that are gener 
ated by the ART system. Examples of background events 
are statistics and decode data units, front-end control 
information, and analysis control information. 

Each process maintains a separate queue and dispatcher for 
storing the events generated for that process. This way, a 
large queue of background events cannot cause the user 
interface events not to be processed. This is the key to user 
interface responsiveness. 
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The Network Advisor Analysis and 
Real-Time Environment 
The user interface and protocol decode applications of the HP 4980 
Network Advisor use the services of a software platform that provides 
real-time protocol analysis and an interface to the network under test. 

by Sunil Bhat 

The analysis and real-time (ART) environment of the HP 
4980 Series Network Advisor protocol analyzers is a soft 
ware platform that has all the necessary services to support 
real-time network protocol analysis applications. To a lesser 
extent it also supports postanalysis of captured data. The 
ART environment is one of two major environments that 
represent the Network Advisor's software architecture. The 
other environment is the general-purpose environment. 
The general-purpose environment provides support for the 
general-purpose programming of the Network Advisor. Spe 
cifically, the general-purpose environment is responsible for 
the user interface, file management, and all other services 
that are essential at the user level. The general-purpose main 
tains all persistent information like node lists and setup con 
figurations, and treats the ART environment like a device. 
Both of these environments are depicted in Fig. 1. 

Some aspects of the ART design were leveraged from the 
CONE1 (common OSI network environment) architecture, 
which provides a network-specific operating system for the 
HP OSI Express card and an environment for implementing 
OSI protocols. Specifically, the logical buffer services for 
encapsulation, segmentation, and reassembly of data were 
ported from the CONE implementation. 

At the software level, the general-purpose and ART environ 
ments communicate with each other by an interenvironment 
process communication (IEPC) mechanism. At the hardware 
level, the ART environment executes on the AMD29000 RISC- 
based processor while the general-purpose environment 
executes on the Intel386SX-based processor and they com 
municate via a shared memory module. The general-purpose 

ART Environment 

General -Purpose 
Environment 

IEPC 

Acquisit ion 
Unit Interface 

(AUI) 

lnte!386SX-Based PC 

Acquisition 
Unit 

AM029000  
RISC-Based 

Unit 

Network Under  Test  

Fig. 1. High-level ART and general-purpose system architect i in â€¢. 
IEPC is the interenvironment process communication channel. 

environment controls and configures the ART environment 
by sending messages via the IEPC mechanism, and the 
ART environment transfers the results of its analysis to the 
general-purpose environment via the IEPC mechanism. 

Typically, any application on the Network Advisor has an 
analysis module that operates in the ART environment. This 
module does in real time all application-specific analysis 
based on relevant data from the network or network counts 
maintained by the hardware. There is also a corresponding 
module in the general-purpose environment that provides the 
user interface for the application. The application-specific 
user interface controls and configures its analysis module 
by commands sent across the IEPC. It also processes and 
displays the results sent by its analysis module to the user in 
some suitable format â€” graphical, tabular, or simple text. 
The Network Advisor allows multiple applications (also 
called measurements) to be active simultaneously. Therefore, 
at any given time there can be numerous applications active, 
each with its own analysis and user interface modules in the 
ART and general-purpose environments communicating 
across the IEPC. 

The general-purpose and ART environments constitute the 
top-level logical entities of the Network Advisor's software 
architecture. The implementation of the Network Advisor 
software follows this logical design very closely. The IEPC 
implementation is split between the general-purpose and the 
ART environments. The general-purpose environment is 
written primarily in Smalltalk and the ART environment is 
almost entirely written in C++. 

This article describes the architecture and high-level design 
issues of the ART environment. The user interface and more 
details about the general-purpose environment are described 
in the article on page 22. 

ART Subsystems 
As shown in Fig. 1, the ART environment consists of two 
subsystems: the processing unit and the acquisition unit. 
The processing unit contains hardware independent func 
tions and the acquisition unit encompasses all hardware- 
specific low-level functions. The processing unit is designed 
to be hardware independent and can therefore be ported with 
relative ease onto other hardware platforms. 

The acquisition unit is responsible for interfacing to the net 
work under test and all the relevant hardware counters and 
timers. While connected to the network, the acquisition unit 
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captures real-time data and stores it in a buffer called the 
capture buffer. It also reports status information and does 
all other hardware specific housekeeping. 

The processing unit is primarily responsible for real-time 
event processing. These events are typically data events 
stored in the capture buffer by the acquisition unit. The 
events could also be commands sent from the general- 
purpose environment or events generated within the pro 
cessing unit. The processing unit also supports event post 
processing. This allows the user to capture a full buffer of 
data that represents an interval of network activity, and then 
analyze it in postprocessing mode. 

The Acquisition Unit 
The data flow of the acquisition unit with respect to the rest 
of the system is shown in Fig. 2. The acquisition unit ac 
cesses the front-end hardware that interfaces to the network 
under test. The front-end hardware transfers MAC-level 
frames from the network under test and stores them in the 
capture buffer along with a timestamp, length, and status 
information for each frame. These timestamps help protocol 
analysis modules correlate data with time. In the ART envi 
ronment, frames that are stored in the capture buffer typi 
cally represent events. The introduction of a frame from the 
capture buffer to the processing unit is called a frame arrival 

MAC stands for media access control, the lowest level of the protocol stack Thus. MAC 
frames media. the frames actually transmitted on the physical network media. 

event. Whenever an event is generated, it gets appended to 
the event buffer, which presents an event stream to the 
processing unit. 

The processing unit uses the event data stream, control mes 
sages from the general-purpose environment, and timer in 
formation to produce two distinct data flows. The first data 
flow is the analysis information that is sent from the pro 
cessing unit to the general-purpose environment via the 
IEPC. This information flow consists of the results from 
protocol analysis modules such as protocol decodes and 
network statistics executing in the ART environment. The 
results are packaged in an application independent form 
called analysis items. Analysis items are described in the 
article on page 34. 

The other data flow results from send requests generated by 
the general-purpose environment. This flow, which can be a 
single frame or a sequence of frames, provides stimulus to 
the network under test. A traffic generator is a prime exam 
ple of an application that can request entire sequences of 
frames to be transmitted repeatedly to create user-specified 
traffic on the network under test. 

There is another distinct data path through the acquisition 
unit that is made up entirely of frames addressed to the Net 
work Advisor. These frames are stored in the node card re 
ceive buffer and the acquisition unit reports them to the 
processing unit as node card arrival events. This data path, 
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'Acquisit ion Events = Frame Arrival Events, Node Card Events, and Counter Read Events. Fig. 2. Acquisition unit data flow. 
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along with the ability to send requests to the network, pro 
vides the basic node card functionality that enables the pro 
cessing unit to make the N'etwork Ad\isor behave as a valid 
node on the network and not just a monitoring environment. 
This functionality is essential for supporting remote capabil 
ities as well as interactive applications like ping and ARR At 
the lowest level the front-end hardware provides the physi 
cal interface to the network and is responsible for sending 
frames to and receiving frames from the network. 

Acquisition Unit Interface 
Access to the functionality of the acquisition unit is pro 
vided by the acquisition unit interface which marks the 
boundary between the processing unit and the acquisition 
unit. The interactions across this interface are summarized 
in the following sections. 

Control and Configuration. The processing unit controls the 
acquisition unit. Among other things, it issues start and stop 
directives to initiate and terminate capture of data from the 
network under test. MAC-level frames are captured from the 
network in either continuous or autostop mode. In the con 
tinuous mode the capture buffer is viewed as a circular 
buffer that wraps around until the processing unit issues a 
stop command. In the autostop mode data is captured until 
the capture buffer is full, which triggers an automatic stop. 
Based on user selection, the processing unit configures the 
acquisition unit to operate in one of these modes. Apart 
from direct control, the processing unit also configures 
acquisition-specific parameters like the size of the capture 
buffer. 

Most of the protocol information is available within the lead 
ing portion of a MAC-level frame, which is made up of proto 
col headers for each level of data encapsulation. The acqui 
sition unit provides the user, through the acquisition unit 
interface, with the ability to specify the number of leading 
bytes of a frame that should be stored in the capture buffer. 
In such a case, the frame is said to be sliced to a specified 
length. This allows the user to store only the relevant portion 
of the frame, which effectively increases the capacity of the 
capture buffer. 

Receive Data. The processing unit receives data events from 
the acquisition unit. These events are MAC-level frames from 
the capture buffer. For each frame captured by the acquisi 
tion unit, an information header is added by the front-end 
hardware. This header information includes a timestamp, 
the received length of the frame, and other status informa 
tion detected by the front-end hardware (e.g., CRC errors). 

Event Formation. The acquisition unit is responsible for the 
formation and reporting of all events or exceptions to the 
processing unit. As the frames get stored in the capture 
buffer, the acquisition unit generates frame arrival events to 
the processing unit. Similarly, the acquisition unit generates 
a node card arrival event for each frame received that is 
addressed to the Network Advisor. It also reports the hard 
ware counts (counter read event) maintained by the front- 
end hardware for statistical applications. Any change in the 
run mode of the acquisition unit is reported to the processing 
unit as a run-mode change event. 

Timestamping. The processing unit environment simulates 
time using discrete time information provided by the acqui 
sition unit. All received data contains a timestamp. In the 
absence of data, periodic clock-tick events are sent to the 
processing unit. On the current hardware platform, the pe 
riod for this event is 100 milliseconds, which defines the 
worst-case resolution of time in the processing unit environ 
ment. It should be noted that the hardware timer chips are 
initialized to the PC time at bootup. This way all analysis is 
correlated with a time base. Also, all analysis items sent to 
the general-purpose environment have a timestamp for syn 
chronization of the general-purpose and ART environments. 

Trapping and Filtering. The processing unit programs the ac 
quisition unit trapping and filtering functionality using the 
set of filters and Boolean expressions provided by the hard 
ware front-end. A filter can be specified to match a range of 
values for each of the first 127 bytes in a frame and the 
frame status byte in the frame header. A Boolean expression 
is the result of any logical combination of filters. A frame 
along with its hardware assigned header is stored in the cap 
ture buffer only if it satisfies at least one Boolean expres 
sion. The header provides a status field that reflects the re 
sults of the Boolean expressions matched by the frame. For 
example, if we wanted to capture all frames sourced by 
node A and destined for node B as well as all broadcast traf 
fic on the network, we would set two filters. We would spec 
ify the source and destination address bytes in the first filter 
to match A and B respectively, and set all remaining bytes to 
match any value (i.e., don't care setting). The second filter 
would have the destination address bytes set to all ones (for 
Ethernet) while the rest are don't cares. Finally, we would 
set a Boolean expression to be the logical OR of the result of 
the above specified filters. The Network Advisor also has 
the capability to generate traps from software-matched 
Boolean expressions or external signals. Currently only soft 
ware traps are implemented. The acquisition unit provides 
an indication to the processing unit when a trap condition 
has occurred. 

Status. The acquisition unit provides status information to 
the processing unit about items such as the size of the un 
processed capture buffer and the length of the send queue. 
This status information is used by the processing unit for its 
internal activities such as flow control. 

Send Data. The acquisition unit provides services for the pro 
cessing unit to send data frames to the network under test. 
Each frame destined for the network is defined by the pro 
cessing unit as an object called a send object. Entire traffic 
scenarios can be described as a list of send objects. This 
enables the acquisition unit to support traffic generator 
applications. 

The Processing Unit 
Exception services constitute the core of the processing 
unit, which is an event-driven system. The basic control 
structure of the processing unit is shown in Fig. 3. The vari 
ous entities in the processing unit communicate with each 
other by means of exceptions. In the context of the process 
ing unit, exceptions are events. Some exception types in the 

October 1992 Hewlett-Packard Journal 31 

© Copr. 1949-1998 Hewlett-Packard Co.



Exception Handler  
Table  

Exception 
Dispatcher  

Exception 
Dependent 

Data 
Analysis Data 

Flow to General- 
Purpose 

Environment 

Exception Handler  A 

Exception Handler B 

Exception Handler Z 

Send Requests 
to Acquisition 

Unit 

T i m e r  G e n e r a l - P u r p o s e  A c q u i s i t i o n  
E x p i r a t i o n s  I n t e r f a c e  E v e n t s  
a n d  O t h e r  E x c e p t i o n s  

System Events 

Fig. 3. Processing unit data flow. 

system, like the arrival of a frame or the expiration of a sec 
ond, are well-known. Applications can also dynamically allo 
cate new exception types and generate them for their own 
use. Because of the event-driven nature of the processing 
unit, actions are triggered on the arrival of exceptions. 

Protocol analysis applications executing in the processing 
unit environment are essentially actions that exist without 
any control of their own. These applications are called the 
exception handlers. Control passes to a particular exception 
handler when an exception occurs that it has shown interest 
in. This model is similar to environments that handle window 
ing applications. It is very effective in handling situations in 
which there are typically a number of events from different 
sources occurring asynchronously. 

Exception Dispatching. The central entities in the processing 
unit are the exception dispatcher and an exception queue, 
which stores events arriving from different sources. The 
dispatcher dequeues exceptions from the queue and invokes 
all interested handlers that have previously registered for 
the exception. The dispatcher, the exception queue, and all 
other associated data structures constitute an operating 
region in the processing unit because together these items 
can be viewed as a process. The processing unit was de 
signed to support multiple regions with different priorities. 
However, for simplicity the current implementation has a 
single region. Therefore, there is a single dispatcher that 
services all exceptions received at the processing unit's 
periphery. The decision to implement a single region in the 
processing unit greatly simplified its implementation, and 
also improved its response time. 

To dispatch events to the appropriate handlers, the dispatch 
er uses a table that has an entry for each type of exception. 
Each entry in this table contains a linked list of zero or more 
exception handler tokens. A handler token is basically a 
pointer to an exception handler function or routine. Any 
application in the processing unit registers for specific ex 
ception types by enabling a handler token. This has the effect 

of adding the handler token to the handler lists for those 
exceptions the application is interested in. The handlers for 
a given exception are simply determined by indexing into 
the exception handler table using the exception token. 

Each exception in the exception queue has a parameter token 
associated with it that contains all exception-specific data 
that needs to be passed to the handlers when the exception 
is serviced. 

Event Synchronization. The dispatcher operates in a synchro 
nous fashion in that only one exception is processed to 
completion before the next one is picked from the exception 
queue. The processing unit model is a cooperative nonblock- 
ing model. This means that a handler cannot be preempted 
before it completes processing. Therefore, the burden is on 
all applications in the processing unit to finish processing in 
a reasonable time. 

The synchronous nature of the processing unit has a number 
of advantages for protocol analysis applications, which 
include: 

1 In a synchronous system there are no race conditions 
between various modules. 

1 Since each event introduced into the system is processed 
completely, there is no need to reorder events based on 
timestamp information. 

1 The correlation of analysis from different modules with 
respect to events and time is greatly simplified. 

Timer Services. One of the central concepts with regard to 
correlation of analysis from different modules, based on 
events, is the notion of time. The processing unit maintains 
two time sources. One is called real time, which is driven by 
the periodic clock ticks from the hardware. On the current 
hardware platform these time ticks are 100 milliseconds 
apart. This defines the resolution of the real-time source. 
The other time source is line time. This is time simulated by 
the processing unit using the timestamps of the data frames 
received in the capture buffer. The line time is advanced 
each time one of the frames is introduced to the processing 
unit as a frame arrival exception. In the absence of frames, 
real time is used to update line time. 

Using these two sources of time, the processing unit supports 
timers and the associated notion of timeout. Timers are rep 
resented by the data structure called timer token. Each 
timer token has its timeout value and a handler token for its 
handler function. The processing unit dispatches the timer 
token to its handler function when a timeout occurs. Any 
application module in the processing unit can create and use 
timer tokens. Standard timer functions like restarting, both 
in an absolute and a relative sense, and canceling a timer are 
all supported by the timer services of the processing unit. 

For both real-time and line-time sources, all timer token 
expirations will occur chronologically. The processing unit 
guarantees that a timer token with a timeout of N seconds 
will not expire before current time plus N seconds, and no 
later than an event with a timestamp greater than current 
time plus N seconds. During run time, line time will track real 
time. In the case of postprocessing, line time is simulated 
using data frame timestamps alone. 
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Conclusion 
The ART environment was designed to be an optimized envi- 
ronment for supporting real-time protocol analyzer applica 
tions. In addition to the basic ART environment, an extensive 
debugging and simulation environment was designed to sup 
port the development and preliminary testing of the process 
ing unit on the HP-UX operating system before integrating 
it with the acquisition unit running on the AMD29000 pro 
cessor. This strategy allowed us to develop code in parallel 
with the development of the target hardware. It also reduced 
the integration effort required once the target hardware was 
available. 

The success of the ART environment design is reflected in 
the relative ease with which applications can be written 
using ART environment services. In fact, different applica 
tions require different services, and as a result, the ART 
environment has been extended to provide frameworks for 
similar types of applications. The decode framework, which 
supports all protocol decodes and the canned test frame 
work, which supports customized measurements for specific 
protocol analysis, are good examples of ART extensions. It 
should be noted that these frameworks in the ART environ 
ment have corresponding frameworks in-the general-purpose 
environment. 

The processing unit was designed to be hardware indepen 
dent. This decision enabled us to provide the Network Advi 
sor with functionality for Ethernet, token ring, and FDDI 
media. Since the acquisition unit interface is an application 
program interface to the hardware-specific software, we 
need only provide an acquisition unit for the hardware we 

are interested in. The rest of the basic ART environment and 
its extensions remain the same. 
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Network Advisor Protocol Analysis: 
Decodes 
The decodes feature of the Network Advisor allows users to traverse from 
a high-level summary of protocol information to a bit-level interpretation 
of the protocol data. 

by RoÃ±a J. Prufer 

The decode portion of protocol analysis involves the recog 
nition and interpretation of the syntax and semantics of the 
different types of network protocols. The HP 4980 Network 
Advisor is different from traditional protocol analyzers in 
that it attempts to interpret data from the network under 
test and provide answers to protocol problems, not just 
reams of data. Two of the Network Advisor's key features 
are a flexible user interface and the number of decodes it 
can handle. 

Design and Development Considerations 
The considerations associated with designing the decode 
platform involved deciding how to: 
Present information to the user 
Divide protocol knowledge between the analysis and user 
interface environments 
Make a contribution to industry-standard decode practice 
Provide a productive environment for decode developers. 

Experience from previous products and user feedback an 
swered many of the user presentation issues. The solution 

to dividing protocol knowledge between environments came 
from a definition of the division of responsibilities between 
the protocol analysis environment and the user interface 
environment. A contribution to decode practice was made by 
including knowledge of the network protocols and determin 
ing and providing information to the user about a network's 
health. Finally, a productive environment was provided in 
which developers needed minimal system knowledge, allow 
ing them to focus on protocol-specific issues. 

Presenting Information 
Presenting information to the user involved understanding 
the expertise of our potential customers. Experienced net 
work managers know the protocols and most of the signifi 
cant fields contained in the protocol fields. These users need 
to see a high-level view of the data and have the ability to 
focus on the specific problem when they determine that 
there is a problem. At the other end of the spectrum are nov 
ice users who know little about protocol fields but need to 
have enough information to ensure that the network is 
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Fig. 1. Summary view of an in 
ternet protocol (IP) in the 
DARPA protocol stack. 
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working. For these two very diverse users we found that 
there were three \iews of the protocol decode that would 
satisfy most requirements: summary view, detail view, and 
data \iew. 

Summary View. The summary view has several uses of the 
same format. The summary decode screen has one line per 
frame showing frame number, time, and three to four other 
significant fields (depending on the field sizes). This view 
can be used on an individual protocol or on a protocol stack. 
For example. Fig. 1 shows the summary decode for the in 
ternet protocol (IP) in the DARPA protocol stack. This 
summary shows the source and destination addresses in a 
dot-decimal format, the name of the next protocol layer, and 
the size of the data being passed to the next protocol layer. 
The summary view is also useful for seeing traffic on the 
network. By changing the format slightly, the user can see a 
network summary that shows the MAC source and des 
tination addresses along with a top-down list of the proto 
cols contained in that frame (Fig. 2). Another common use 
of a summary display is to show a stack-specific overview. 
For instance, the summary for the AppleTalk stack shows 
the source and destination MAC addresses and the Apple- 
Talk protocols contained in that frame (Fig. 3). 

Detail View. The detail view is a full-sized window that 
shows one packet or protocol per display. The detail-view 
format has three columns. The first column lists the names 
of the fields in a packet, the second column contains the 
current value in the field, and the third column describes the 
meaning of the field or the value in column two. In Fig. 4, 
which shows a detail view of an IP packet, the first column 
shows an ordered list of the fields that are in the packet. The 
first item on the list shows the version of the IP packet, 

'  Department of Defense Advanced Research Projects Agency. 

1 MAC protocol for media access control, the lowest level of the protocol stack. Thus MAC 
frames media. the frames actually transmitted on the physical network media. 

which according to the second column is 4. The second item 
shows that the internet header length field of the IP packet 
has the value 5, which indicates 32-bit words (column 
three). The precedence field has the value 000... which cor 
responds to routine precedence (as opposed to an urgent 
precedence). Following the ordered fields in the protocol is 
the derived information about the packet. For instance, 
there may be an indication about how much data a packet is 
passing up to the next layer, or information about the reas 
sembly process or protocol-following process.*** The detail 
display can also be used to show the fields of an entire pro 
tocol stack. For instance, it can show the Ethernet fields, 
the IP fields, and the TCP fields together in one display. 

Data View. The third view is of the data contained in a packet. 
Again, the flexibility exists to show all the bytes of the packet 
or just the bytes associated with a single layer. This display 
format lets the user see data in a format that may have more 
meaning. For instance, there may be users who want to see 
data in EBCDIC or hexadecimal formats (Fig. 5). Another 
variation shows the entire packet of data with protocol 
headers separating the different protocol layers. 

Different Environments 
The decode design is split between the two major functions 
of the instrument. Displaying strings and values and format 
ting are handled by the general-purpose environment, and 
protocol meaning is determined by a module in the analysis 
and real-time (ART) environment. The general-purpose envi 
ronment provides mechanisms for handling the Network 
Advisor's user interface and the ART environment provides 
services for interfacing to the network and transporting data 
to and from the general-purpose environment. For greater 

'* Protocol following is tracing the different states a connection goes through to transfer 
information 
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Fig. 2. Summary view showing 
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flexibility all the incoming network data, after being inter 
preted and put in a special data structure, is sent from the 
ART environment to the general-purpose environment. This 
allows the user to select which format is more useful and 
not have to wait for information to be processed again in the 
ART environment. The services provided in the ART envi 
ronment and the relationship between the ART and general- 
purpose environments are described in the article on page 
29. The user interface is described in the article on page 22. 

Fig. 3. Summary view for an 
AppleTalk stack. 

The data structure that is passed between these two envi 
ronments is called an analysis item. This structure was 
chosen because it allows many different protocols to be 
described in one format. An analysis item contains two or 
more analysis data units (ADUs) as shown in Fig. 6. There 
is a one-to-one correspondence between an ADU and a 
protocol decode. 
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Fig. 5. Data view in hexadecimal 
format. 

Each ADU contains three sections. The first section is data 
for the associated protocol layer; it is referred to as the hex. 
The second section is the syntax for the fields in the proto 
col. For instance, each field in the protocol has a unique 
syntax record associated with it. The last section is a seman 
tics section, which contains additional information derived 
from analysis of the protocol. 

The syntax section is further divided into a series of records. 
These records are patterned after the ASN. 1 encoding of a 
tag, a length, and a value field.1'2 Each field in the protocol 
is assigned a unique number (the tag). In cases where several 
protocols share the same field, such as a destination address, 

Analysis Item 

ADU: Top (of 
Protocol Stack) 

(User Data) 
Analysis Data Unit  

ADU: Bottom 
(of Protocol 

Stack) 

(Media  Data)  

ADU = Analysis Data Unit 

Fig. 6. AJÃ analysis ilcni dala structure. 

this tag is shared so that it is always called Destination Address 
in the display of that field. The second field in the ADU is an 
offset field. It indicates where the bytes or bits exist in the 
hexadecimal field of the protocol. If the most-significant bit 
is 1 then the field is interpreted to be the number of bits, and 
if the first bit is a 0, it is the offset in bytes. The third field is 
the length of the protocol field. Again, the most-significant 
bit indicates a bit or byte length. The last field is called the 
status/error/warning field. It is one of the two major con 
tributions of the decodes to the Network Advisor. It tells the 
user more information about a specific field. 

The semantics section of the ADU has a more free-form for 
mat. It has a unique tag that describes the information and 
the length of that information. Like all information passed 
between the two environments, the data in the semantic 
section must adhere to the long word boundary rules. Ex 
amples of the information passed in the semantics section 
include reassembly information, resequencing information, 
and protocol-following information. 

Decode Development in the ART Environment 
The object-oriented C++ design of the ART environment 
gives a decode designer four classes to work with. These 
include the data analysis class, the module record registra 
tion class, the path entry class, and the path SAP entry 
class. A GNU-EMACS editor function fills in the class names 
and formats a module for simple default class protocol 
when a protocol module is first checked out for design. This 
provides the decode designer with a foundation on which to 
add the features of a specific protocol. 

Data Analysis Class. The data analysis class contains a func 
tion called makeAdu that allocates and formats the ADU for a 

A long word is a four-byte word 

A SAP protocol access point) is an addressable point at which protocol services are provided 
for the next-higher protocol layer 
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particular protocol. It allocates memory space for the hex, 
syntax, and semantic sections of the ADU. In most proto 
cols, the fields are known and do not change. Only in the 
case of options or dependent fields are there extra fields 
that need to be considered. Because of the large set of 
known fields, space can be allocated and field values (tag, 
offset length, and status/error/warning) can be defaulted. 
When the makeAdu routine is executing, it moves through 
each field in the frame data and analyzes it for significant 
facts. For instance, in the IP protocol, the version number is 
checked. If the version is not 4, the status/error/warning 
field of the version syntax record shows a number signifying 
a bad version. Another example is the IP internet header 
length. If this value is longer than the bytes available, an 
error is signaled in the status/error/warning field of the 
internet header length syntax record. 

The status/error/warning check can be as elaborate as the 
designer wants to make it. In some protocols the difference 
between a good value and an unacceptable value is not 
straightforward. In other protocols there are no fields that 
are open to interpretation. For instance, in Novell's NetWare 
Core Protocol (NCP) the completion code values are listed 
as having five valid values. An update to this specification 
for future releases of NCP may add more values, so our de 
code for definitively call invalid any other value used for 
a completion code. 

By using object inheritance, different features can be added 
to a decode in the semantic section of the ADU. The devel 
oper can inherit several functions into the data analysis 
class for conveying additional protocol information to the 
user. An example is the dataSize record. This record indicates 
how much information is being passed up to the next layer 
in a protocol stack from the current layer. Another example 
is the calculation of a correct checksum. If the protocol has 
a bad checksum, it needs to be displayed along with the cor 
rect value. This information can also be sent in a semantic 
record. 

Module Record Registration Class. The module record regis 
tration class allows the decode to be called from almost any 
place in the decode process, allowing a protocol to be en 
capsulated. This situation is common in the case of the 
DARPA internet protocol. This IP can be called directly over 
Ethernet by putting the type field value of 0x0800 in the thir 
teenth and fourteenth bytes of the Ethernet header. It can 
also be called from the SNAP protocol which is above the 
IEEE 802.3 and 802.2 protocols. The SNAP protocol maps 
the field value 0x0800 to IP just as the type field of Ethernet 
does. Both of these protocol combinations call the same IP 
decode module. 

The module record registration class allows the decode 
writer to specify the decode modules called from a particu 
lar protocol. For example, in the IP module record registra 
tion class, a value of 5 in the next protocol field maps to the 
system calling the transport control protocol. Another exam 
ple is 17, mapping to the user datagram protocol from the IP 
module record registration class. 

Path Entry Class. The path entry class joins the ADU items 
together to form a chain of ADUs collected into one analysis 
item. The data passed in the analysis item might contain an 

Ethernet ADU, an IP ADU, a transport layer ADU, and per 
haps a file transfer protocol ADU. In addition, standard top 
and bottom ADUs are added to the package to take care of 
user data such as a file transfer (the top ADU) and media 
information (the bottom ADU). 

In addition to formatting the information sent to the general- 
purpose environment and eventually the display, the path 
entry class also takes care of forming the paths in the ART 
environment. These paths uniquely define address-specific 
mappings. For example, consider a protocol stack in which 
MAC address A is talking to MAC address B and the IP ad 
dress for A is C and the IP address for B is D (see Fig. 7). In 
this stack C will be above A and D above B. The path entry 
class will tie A to B, A to C, B to D, and C to D so that one 
side of a protocol conversation can always see the state of 
the other side. 

Path SAP Entry Class. The path SAP entry class allows 
connection-oriented protocols to keep track of the two 
sides of a transaction and to store additional information 
in a common area. A scratch space can be allocated to keep 
track of the state of the connections, the sequence numbers, 
and any other information that would help follow a connec 
tion and share information between the two sides of the 
conversation. 

A strict layered approach to protocol analysis was chosen 
for the decode development model because it allows dynamic 
allocation of protocol analysis decodes and frees the devel 
oper from the need to depend on knowledge about any other 
protocol above or below a protocol module. For instance, 
the IP module knows that several different protocols can be 
sent information via the next protocol field. However, be 
cause of the layered approach in the ART environment, the 
IP module does not have to know that any of these protocol 
decodes actually exists. The module will send the data to 
the next layer, and if there is no decode for the data, the 
data automatically gets put into the top protocol module's 
hex field in the ADU. This indicates that there are no more 
consumers for the data and signals the ART environment 
that an analysis item is complete and can be sent to the 
general-purpose environment for display. The IP module is 
then ready to process the next frame. 

Fig. 7. Connections formed between ADUs by the path entry class 
to show connections within and between nodes. 
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F r o m  A R T  E n v i r o n m e n t  

Fig. 8. Components and data flows involved in decoding and 
displaying data in the general-purpose environment. 

Using a prototype template for these four classes and two 
very diverse protocols as the first ones to be developed in 
this environment, we were able to test some of the decodes. 
As more and more decodes were developed, improvements 
to the templates were made. For instance, a function call was 
added to set a bit indicating to the general-purpose environ 
ment that a frame contains an error. Also, subclasses were 
developed that are useful to different protocol stacks. An 
example of this is a class for handling reassembly. This class 
is used in IP and the ISO network layer decode. 

To test decodes in the ART environment, the input to a 
decode was simulated using tools that take an input file de 
scribing the scenario to be tested and provide a stream input 
to test the ART code on an HP-UX operating system. This 
means that all the test cases a protocol can expect to see 
can be put into a file and tested as the code is developed. 

The ART environment is designed so that all protocol analy 
sis can be done once in one place. This design allows the 
display modules to be concerned only with the presentation 
of data and not with any protocol-specific knowledge. 

Decodes in the General-Purpose Environment 
The decode modules in the general-purpose environment 
were designed around the three main methods of displaying 
information described earlier. These three displays allow the 
user to traverse from a high-level summary of information to 
the lowest bit-level interpretation. Since they are relieved of 
any protocol analysis duties, the general-purpose decode 
modules concentrate on taking information from the analy 
sis items from the ART environment and the format infor 
mation from a database to provide the optimal display of 
information to the user (see Fig. 8). 

Like the ART environment, the general-purpose environment 
was designed using an object-oriented approach. Because 
the ADUs consist of the same three sections, there is generic 
code in the general-purpose environment that parses each of 
the three sections. These parsing modules are optimized 
depending on the what the user is viewing. For instance, if 
the user is looking at a summary view with only one stack 
open, the parser can traverse the analysis item pulling from 
each ADU only the information needed for a summary 
view. This optimization leads to a significant increase in 
the performance of the display system. 

For the decode developer, display format information is in 
put via a database file written in DBF (database format). 
This ASCII file, which is usually written near the end of the 

decode development cycle, contains information about map 
ping numbers contained in the ADU to strings displayed in 
the decode windows. This file is parsed into Smalltalk 
Collection and Dictionary classes, which are used at run time in 
the general-purpose environment. This implementation has 
two ven," important advantages to the decode developer. 
First, no knowledge of Smalltalk is required to develop the 
decode modules. One less environment to learn helps to 
reduce the nonprotocol development time and fully uses the 
protocol analysis skills of the protocol expert. The second 
advantage is that the decode developers are not required to 
do run-time debugging of the decode modules. This drasti 
cally reduces the variety of bugs that occupy the protocol 
expert's time. 

The DBF file format has several sections. The first section is 
setup information. This includes the name of the decode 
(e.g., IP), the network media (e.g., IEEE 802.3), and the 
names of the online help files that can be referenced. 

The second section in the DBF file contains data for map 
ping the constants sent in the ADUs to the strings that ap 
pear in the different protocol views. This mapping informa 
tion is split into four sections: mnemonics, errors, warnings, 
and status messages. There are some strings common to all 
these sections. For instance, if there is a checksum error, 
one common string to indicate this condition is included in 
the system errors file. In addition to mapping strings, the 
mnemonics section also has a provision for declaring the 
format in which to display the value. Some common display 
formats are convertToDecimal, convertToBinary, convertToDotDecimal, 
convertToHex, and convertToAddress. With the convertToAddress 
format, user names are mapped to addresses and put into 
the database in place of network addresses. 

A significant contribution is the ability to display the proto 
col fields in a manner that makes sense for each field. For 
instance, in the IP protocol the first field is the version num 
ber. It is four bits long, and instead of showing the user the 
four bits, it is displayed in decimal as the specification is 
written (a 4 is easier to read than 0100). Another example of 
this is also in the IP protocol. The precedence field is in I he 
second byte of the protocol and is three bits long. To a user 
who is not familiar with this field, the values mean very 
little. However, to a Network Advisor user, the value column 
shows that the field is three bits long and specifies the three 
bits. In addition to this, the third column gives a high-level 
interpretation of these bits (Routine precedence in Fig. 4). 

The next section in the DBF file contains the strings for 
column headers for the summary, detail, and data view 
windows. 

When the fields in the DBF have been filled in, the DBF file 
is then put through a parse routine. This compilation is quite 
robust in terms of catching syntax errors and typing mistakes. 
The result is a file of type xxx.msr, which is a measurement 
file used at run time by the decode modules in the general- 
purpose environment to display the decode information. 

The first pass through the development of the decodes in the 
general-purpose environment revealed many areas for opti 
mization. Because the input to the decode modules is an 
ASCII file and the modules are developed with an object- 
oriented language, a second pass through the system was 
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done late in the development cycle to find the common ele 
ments among the protocols. For example, a number is now 
used to represent common field names, errors, and warn 
ings. Also, the detail display uses every syntax record so 
there is no need to specify its format in the ASCII file, and 
many of the same semantic records are used by protocols so 
a standard display method was developed for these records. 

The same testing approach used in the ART environment 
was used in the general-purpose environment. Files of ADUs 
(or analysis items) were generated in the ART environment 
and transferred to a PC running the general-purpose envi 
ronment. These files were then fed to the decode window as 
if it were running from data stored in the capture buffer in 
the ART environment. All of the test cases used to test the 
ART code were used to test the general-purpose portion of 
the product. In addition to testing in separate environments, 
test files were sent to an HP 4972A protocol analyzer and put 
onto the IEEE 802.3 media for live capture by the hardware. 
The results from testing with the HP 4972A were compared 
with results from previous tests to verify consistency of 
results and regression testing. 

The Results 
The general-purpose development effort for decodes was 
reduced to less than 20% of the total decode development 
tune because we used protocol templates, eliminated the 
need for our protocol expert to develop in Smalltalk, and 
used a robust parser that caught many of the syntax errors 
in the DBF file. Debugging time was also reduced because 
the general-purpose decode files are one step removed from 
the real-time processes. 

By dividing the decode implementation into two environ 
ments and identifying conventions between common proto 
col decode tasks, the development time for new protocol 

decodes was significantly reduced. All major protocol stacks 
have been decoded and the embedded protocols have been 
accounted for automatically. There is a great deal of code 
reuse between different protocol stacks because of the 
inherited functionality provided by using object-oriented 
environments. 

There are a few exceptions in which the strict vertical com 
munication between protocols had to be subverted. For 
instance, in the SNAP decode, if the next protocol field indi 
cates AppleTalk protocols, the lowest layer is examined to 
see if it is a token ring network or Ethernet. A modification 
is then made in the ADU to send this to either a TokenTalk 
or an EtherTalk decode based on the lowest layer. Another 
example is in the Novell protocol stack in which a reply 
frame contains a frame number and a packet type for the 
corresponding request frame. 
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Mechanical Design of the HP 4980 
Network Advisor 
The package design for the Network Advisor was guided by the electrical, 
mechanical, and ergonomic requirements of a PC-based protocol analyzer. 

by Kenneth R. Krebs 

The HP 4980 Network Advisor package consists of 31 
injection-molded parts, 15 sheet-metal parts, 19 cables, 
nine printed circuit boards, two custom-machined parts, a 
custom power supply, flexible and hard disk drives, a color 
or monochrome LCD (liquid-crystal display), and numerous 
other custom and standard parts. Its hinged, fold-up, flat- 
panel display and fold-down keyboard are designed to make 
it easy to use the Network Advisor either on a desktop (see 
Fig. 1 on page 6) or in a floor-standing position (see Fig. 1), 
while providing maximum portability when closed. It has 
interchangeable network interface modules that mount to 
the underside of the instrument. The overall package mea 
sures 5.9 inches high by 14.3 inches wide by 16.8 inches 
deep and weighs 25 pounds fully loaded. 

Fig. 1. The Network Advisor in a floor-standing position. 

Design Decisions 
Mechanical design for the Network Advisor was driven by 
several major decisions made very early in the product defi 
nition phase of the project. The first of these was to make 
the instrument DOS-compatible and, therefore, PC-based. 
Because of the dominance of the DOS operating system in 
the LAN testing market, our customers demanded DOS 
compatibility in our products. 

While we did not intend to market the Network Advisor as a 
PC that does protocol analysis, but rather as a protocol ana 
lyzer with an embedded PC, we did feel that the ability to 
run standard PC applications (e.g., word processors and 
spreadsheets) would be a marketing benefit. Therefore, we 
needed a full-screen, 80-column display. Since the VGA stan 
dard was emerging as the choice of the future, we chose it 
for our instrument. A second result of the DOS decision was 
the requirement for a full-function, full-size PC keyboard 
and internal flexible and hard disk drives. 

A second decision (a result of the first design decision) 
was the need to be able to install at least one and prefer 
ably two standard, off-the-shelf, full-length, low-profile 
PC cards. 

The third major decision was the choice of a flat-panel 
technology over a CRT. The VGA decision dictated a CRT 
too bulky and heavy to meet our portability requirements. 
Also, CRTs have some manufacturing disadvantages we 
wished to avoid (e.g., pincushioning, alignment, high voltages, 
and shielding). We also felt that the market perception of 
flat panels as a leading-edge technology would be beneficial. 

We investigated several flat-panel technologies including 
electroluminescent, gas plasma, and liquid-crystal. Electro 
luminescent and plasma displays were costly, had high power 
dissipation and lacked sufficient grayscale shades. After 
investigating several types of LCD, we chose a cold-cathode, 
backlighted, film-compensated LCD as having the best com 
bination of brightness, contrast ratio, cost, and weight. Just 
before our tooling release, Sharp Inc. introduced a 10.4-inch- 
diagonal, TFT (thin-film transistor) active matrix, color LCD, 
which is larger and thicker than the monochrome LCD we 
had chosen. After a redesign effort to accommodate the 
larger display, the display housing injection mold was de 
signed with inserts to allow for both color and monochrome 
versions. 

October 1992 Hewlett-Packard Journal 41 

© Copr. 1949-1998 Hewlett-Packard Co.



Because there are several different networking technologies 
(e.g., token ring network, Ethernet, fiber distributed data 
interface (FDDI)), our instruments need different hardware 
sets for data acquisition and analysis and different external 
connector types for connection to the network. In the past 
we accomplished this by offering different interface mod 
ules (pods) cabled to the base instrument (mainframe). Con 
sidering how to handle different network technologies led to 
our fourth major design decision which was to integrate the 
pods into the mainframe so that nothing external would be 
required or would hang off the instrument and get in the 
way during operation. These integral pods needed to be easy 
to install and remove. The difference in networking technol 
ogies also required that the network line and event status 
LEDs on the front panel (up to 12 pairs with each pair con 
sisting of one red and one green LED) be easy to relabel 
since different network types have different numbers and 
types of lines and different nomenclatures. 

Another important design constraint was the requirement 
that the user be able to operate the instrument conveniently 
on a desktop and on the floor. Frequently our customers 
need to make their network connections in a small control 

room, a closet, or around the back of a patch panel where 
tabletop space is unavailable. 

Since many of our customers are third-party network service 
providers who travel with the instrument to their customers' 
sites, the instrument had to be truly portable and rugged. 
This meant that it had to fit under an airline seat and weigh 
less than 33 Ib (we set a target of 20 Ib and achieved 25 Ib 
with a fully configured instrument). This also meant that we 
needed a carrying case not only for the instrument but also 
for appurtenances such as interface cables and different 
interface modules. 

Many of our customers are network managers who do not 
routinely move their instruments from place to place. There 
fore, we wanted a configuration that would work well with 
an external color monitor, preferably one that could support 
the monitor on top of it so as to use as little desktop space 
as possible. 

Lastly, we wanted a package that made a true contribution 
to manufacturability by being very easy to assemble and ser 
vice. Therefore, we wanted to eliminate as many fasteners 

Display Housing 

Display Rear Cover 

Shielded LCD Signal Cable 

LCD Backlight Cable 

LCD Cable Bracket 

Fig. 2. Display housing and other 
components for the color LCD 
panel. 
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and small parts as we could. We also wanted this package to 
be as flexible as possible for maximum longevity and reuse. 

Design Concept 
The design decisions described above resulted in the follow 
ing implementations for the Network Advisor package. 

Display Housing. The choice of a VGA flat-panel display dic 
tated a design concept in which the display rotated or other 
wise moved into \iewing position. To make it stationary on 
the front panel would have made the instrument too large or 
required an upright package similar to the HP Integral porta 
ble scientific computer â€” a design ill-suited for floor opera 
tion or for use with an external monitor. Rotating the display 
up and back into position as is done with a laptop was 
equally unsuitable. Rotating the display up and forward puts 
it in good viewing position above the keyboard for desktop 
operation, and rotating it a bit farther puts it in good posi 
tion for floor-standing operation with the instrument stand 
ing on its rear feet. The display housing unit has two pivot 
arms at its bottom corners (see Fig. 2). The right pivot arm 
carries the friction clutch that holds the display in any posi 
tion. The left pivot arm routes and protects the display sig 
nal and backlight cables. In addition, the left pivot arm has a 
short, molded circular protrusion which acts as a shaft. This 
shaft gets captured between semicircular features molded 
into the front panel and a front-panel rear cover piece which, 
when the pieces are assembled together, form a bearing (see 
Fig. 3). This bearing captures the shaft for rotational support 
of the left side of the display housing unit. In its folded-away 
position, the display resides in a recess molded into the 
plastic top chassis. 

Even in its folded-away position, the front of the display is 
exposed, and a cover piece is required to protect the display 
during travel. This protective lid has side latches that snap 
onto the top chassis. The side latches are pressed inward to 
release the lid, whereupon it is rotated up and back (see Fig. 
4). After the display is raised, the lid is again closed and 

Fig. travel. The protective lid used to protect the display during travel. 
Also shown is the location of the detachable pod assembly which 
snaps into the underside of the mainframe of the Network Advisor. 
The pod assembly is discussed later in this article. 

latched. The lid also acts as the platform to support an ex 
ternal monitor when the display is left folded away (a user 
must software-select which display is on at any one time to 
keep the internal display from overheating when closed). A 
large, polycarbonate label covers the underside of this lid to 
hide the extensive ribbing needed for stiffness. 

Keyboard. The full-size keyboard is hinged onto the front 
panel where, in its closed and latched position, it protects 
itself and the front panel. It unlatches and rotates into posi 
tion on two custom shoulder screws. Nylon-inserted lock 
nuts captured in each end of the plastic keyboard housings 
keep the shoulder screws from backing out against the key 
board rotation. A crescent spring washer sandwiched be 
tween a flat washer (to protect the plastic from galling) and 
the underside of each shoulder screw head provides friction 

D i s p l a y  A s s e m b l y  

Fig. 3. Front panel and front- 
panel rear cover showing the 
semicircular features molded into 
both parts, which form a bearing 
for holding the display housing in 
place. 
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to hold the keyboard in any position for typing (see Fig. 5). 
Normally the keyboard is simply rotated until it rests on the 
desktop at a seven-degree angle for comfortable typing. 
When the instrument is standing vertically on its rear feet 
for floor operation, the keyboard rotates around to a stop so 
that in is in a comfortable position for typing while sitting in 
front of the instrument (see Fig. 1). While not easily detach 
able, the keyboard is removable in the event that a user 
wishes to use a standard 101-key keyboard instead of the 
one provided. An adapter cable is provided for this purpose. 

More than any other feature, the keyboard, folded in a verti 
cal position when closed, determined the height of the 
instrument. The keyboard and the need for a full-length PC 
card determined the width of the instrument. The overall 
length was determined by the components inside the instru 
ment, with consideration given to how tall the package stood 
in its floor-standing mode. 

Top and Bottom Chassis. The bottom chassis acts as the 
foundation on which all other subassemblies rest (see Fig. 
6a). It measures 3.2 inches high by 14 inches wide by 14.2 
inches long and is molded in a 600-ton press. To reduce the 
number of screws, many molded features act either as snap- 
fit receptacles or anchors for other parts and assemblies. 
Major assemblies such as the front panel, handle, and rear 
panel drop vertically into molded grooves and are held in 
place until the installation of the top chassis captures and 
anchors them by the addition of four screws. The top chas 
sis (Fig. 6b) is roughly the same size as the bottom and is 
molded in the same press. Tabs on the top chassis mate to 
slots in the front panel and front-panel rear cover to anchor 
that assembly and provide good seam contact for EMI 
suppression. 

Pods. The interchangeable interface modules (pods) house 
the data acquisition and analysis hardware and the connec 
tors for the physical interface to the network. A plastic 
molded housing forms the bottom section of the pod con 
tainer. A pair of painted and screened sheet-metal covers are 
lap-joined together using flathead screws, countersunk 
punched holes in one piece, and press-in floating fasteners 
in the other to form the top section of the pod container (see 
Fig. 7). This was done to compensate for assembly tolerance 
stackup and to allow for easy assembly of different network 
connector types and combinations. The printed circuit 
boards mount to each other via board-to-board connectors 
and snap-mount, press-in standoffs. The printed circuit 
board subassembly then snap-mounts to press-in standoffs in 

Front-Panel 
Cover 

Bottom Chassis 

(a) 

Crescent Spring 

Fig. 5. Keyboard connection to the front panel. 

(bi 

Fig. top (a) The bottom chassis of the Network Advisor, (b) The top 
chassis of the Network Advisor. 
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Metal  Covers 

IEEE 802.5 
(Token Ring! Board 

IEEE 802.3 
(Ethernet) Board 

Pod Housing 

Main Pod Board 

( a )  ( b )  

Fig. how (b) assembly, (a) The three main components of the pod and how they go together, (b) The assembled pod. 

the sheet-metal covers. The whole assembly then screws to 
the plastic pod housing. 

An assembled pod mounts on the underside of the mainframe 
(see Fig. 4) using four quarter-turn fasteners. The quarter-turn 
studs are captured, but float freely in the pod housing and 
mate to receptacles that are ultrasonically installed in the 
bottom chassis. All of the standard PC signals are bused 
from the mainframe to the pod through a 140-pin connector 
pair which automatically mate during pod installation. The 
pod cannot be installed incorrectly. The network interface 
connectors are mounted along the side of the pod, which 
puts them in easy reach for connection to the network, espe 
cially in floor-standing operation. The exposed sheet metal 
front panels of the pod through which these connectors pro 
trude are recessed to keep the connectors protected. How 
ever, this configuration reduced the internal width available 
in the pod for printed circuit boards. A full-length, standard 
PC card was too long to fit in this width. Therefore, two 
plastic molded end caps were tooled to allow for the inclu 
sion of the PC card. In this case, the sheet metal, no longer 
exposed, is reduced to a single, flat, unpainted piece which 
helps retain the end caps and close up the pod. The pod can 
accept either one full-length and one 3/4-length, low-profile 
PC card, or our custom LAN data acquisition boards, but not 
both simultaneously. Because we offer some products in the 
form of PC cards for use in customers' existing network 
computers, these cards can also be put into pods for use in 
the Network Advisor. One example of this is the HP 4957PC 
wide area network analyzer, which is on a PC card. With this 
feature, a customer can install an HP 4957PC into a pod to 
make the Network Advisor into a WAN analyzer. 

Bottom Feet. Along the bottom of the pod housing are molded 
two long rails that "join" the front and rear bottom feet 
molded into the bottom chassis. These rails are 0.5 mm 
shorter in height than the chassis bottom feet. This ensures 
that while the bottom feet are always the ones to bear the 
weight of the instrument, they do not catch the back of a 
user's leg when the instrument is carried by its padded, 
flexible side handle. 

Rear Panel. The molded rear panel mounts the line filter/fuse 
module, the fan, and the external PC ports printed circuit 
board, which provides two serial ports, one parallel port, 
and one video port (see Fig. 8). The area behind which the 
PC ports board mounts is formed using mold inserts to allow 
easy changes in the number and configuration of connectors 
(e.g., adding HP-IB or SCSI). A fan grill and cage are molded 
into the panel so that the fan can be snapped into the panel 
without the use of fasteners. A molded-in feature acts to 
capture the RAM backup battery in the bottom chassis when 
the rear panel is installed. All text and graphics (connector 
labels, line information, safety warnings) are molded-in on 
mold inserts to make them easy to change or repair. Also, 
text is indented in the plastic (raised on the inserts) and 
molded into shallow recesses to accept labels to cover the 
text if it becomes necessary (e.g., labels for different lan 
guage versions). A long label was added to accept new 
warning and regulatory messages as they become necessary. 

Tooling and Molding 
HP's Palo Alto Fabrication Center (PAFC) molds most of the 
Network Advisor's plastic parts. Mobay's Bayblend FR1441 
polycarbonate/ABS blend was chosen as the basic material 
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Line Filter/Fuse 
Module 

External 
Ports Board 

Bottom 
Chassis 

Fig. Advisor. Components attached to the rear panel of the Network Advisor. 

for its combination of strength, moldability, appearance, and 
price. Two parts, the display cover lid and the display hous 
ing rear cover (both large, thin parts), required FR1439, 
which has a higher percentage of ABS, for increased mold- 
ability to prevent warping and to reduce blush. Two small 
parts (molded by a second vendor), the snap-on side feet 
and the snap-on rear mounting screw covers, use GE's Lexan 
920 straight polycarbonate. While we feared a noticeable 
gloss difference between the blended and straight materials, 
our fears were not realized and the match has been good. 
The snap-on display lid latches also use this material for 
strength reasons. They have a molded-in cantilever spring 
that provides the force to return them to their home posi 
tions after unlatching. Straight polycarbonate with its higher 
allowable strain rates and creep resistance was needed for 
these springs. The friction clutch arm bears the brunt of the 
display housing support and torque when moving the dis 
play. For this reason, it is molded in a 40% glass fiber filled 
polycarbonate for strength and stiffness. The keycaps are 
molded in polyester to allow sublimation printing of the 
three keycap legend colors. 

All external cosmetic surfaces are textured using an HP 
frosted grain III specified as 0.001 inch deep on typically 
2.5Â° draft. Some surfaces, however, were designed with 
only 1.5Â° draft. On these surfaces, the texture is specified 
as 0.0005 inch deep to avoid possible ejection problems. 

'  A draft is a sl ight angling of the vertical walls of an injection mold to allow the molded part to 
separate from the mold. 

As mentioned previously, the display housing and display 
housing rear-cover molds were designed with two sets of 
inserts to accommodate the color or monochrome LCD dis 
play. The color LCD has the larger active area opening and 
requires different mounting boss height and location. 

The handle-mounting piece and the front-panel rear cover 
piece are about the same size and weight. As a result, they 
were put into a family mold to save on both mold cost and 
part cost. This later had the disadvantage of changing two 
parts when only one, the handle mount, needed its thickness 
reduced. Additional work was then needed on the front- 
panel rear cover to compensate for the reduction in the 
mold separation line. 

During the lab prototyping phase, we soft-tooled the entire 
box using urethane molds for parts over 40 square inches 
and aluminum tools for the smaller parts (a process limita 
tion). The vendor worked directly from IGES translations 
of our 2D, undimensioned HP ME 10 drawings. The parts 
had molded-in color and texture but were soft and capable 
only of limited structural and temperature testing. The 
smaller parts, molded in aluminum tools, were molded in 
their proper materials, which allowed thorough structural 
testing of these parts. While this process produced high- 
quality parts that were very useful in our evaluation, the 
process was costly and took much longer than the vendor 
estimated. 

With an all-plastic enclosure, we knew that shielding tech 
nology would become a critical factor. From the outset, we 
planned on vacuum-deposited aluminum for this job. This 
technology was available in very few places. Also, the size of 
some of our parts (requiring up to 600-ton presses) limited 
the molder selection greatly. However, one molder had up to 
1000-ton presses and the ability to do vacuum deposition 
in-house. This vendor selection later proved to be unfortu 
nate for two major reasons. First, they relied heavily on cut 
ting cavities in the parent steel. Many of our parts have deep 
ribs and intricate features which, later experience would 
show, would have been more easily polished and otherwise 
tuned had they been formed using mold inserts. While more 
costly up front, inserted molds would have saved us time 
and money during the tool tryout and tuning phase of our 
product development. In some cases, attempts at changing 
the parent steel, especially polishing of deep ribs, caused 
mold damage that could not be fixed, leaving some parts 
permanently out of specification. In these cases, unfortunate 
and costly design changes were necessary. 

The second reason was that we found out very late in the 
tool tryout phase that the molder could no longer supply us 
with molded parts. During the ensuing turmoil we initiated 
our contingency plan of moving the molds to PAFC, which 
had recently installed a new 550-ton press capable of mold 
ing our larger parts. This transition would have been signifi 
cantly more painful if our materials department had not 
planned for it. 

' IGES (Initial Graphics Exchange Specification) is a file format that is used to describe models 
created with CAD programs. 
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Environmental Testing 
The 2-to-3-um-thick vacuum-deposited aluminum coating 
proved to be an ineffective shielding technology with which 
we experienced flaking problems, especially during humid 
ity testing. Our search for an alternative included nickel- 
based and copper-based paints, electroless copper plating, 
and zinc arc spraying (ZAS). After tests and evaluations of 
the controllability of the processes, we opted for ZAS, a ca 
pability that PAFC had in-house. While this has proven to be 
more costly than vacuum-deposited aluminum, it has al 
lowed us to meet our targeted CISPR 11 radiated emissions 
specification. Initially, because the silicon ZAS masking fix 
tures are soft and flexible for easy cleaning, the force of the 
spray would sometimes blow the mask away from the part 
allowing zinc overspray to get on the cosmetic surfaces. 
Reinforcing the masks brought the process under control. 

Many of our part interfaces were designed with 2-to-3-nm- 
thick aluminum coating in mind and therefore had very small 
clearances. The move to 0.003-to-0.007-inch-thick zinc caused 
some clearances to become interferences. In some cases, 
this required tool modifications to make parts thinner. For 
tunately, in most cases this could be accomplished by simply 
shaving the core-side parting line and readjusting shutoffs if 
necessary. In other cases, costlier tool modification requir 
ing welding and recutting was needed. However, in one case 
welding was impractical and zinc had to be masked from 
affected areas. While shielding effectiveness was reduced, 
the ZAS process, coupled with other internal electrical and 
cabling modifications, gave us enough margin to pass the 
CISPR 11 specification. 

The package was tested to the HP class Bl shock and vibra 
tion desk ft was tested in closed-up-for-travel, desk 
top (display up, keyboard down), and floor-standing config 
urations in both color and monochrome display versions. 
No unacceptable damage was sustained. 

Cooling of the package is provided by an 80-mm-square 
tubeaxial fan with a maximum airflow of 38 ft:3/min. Ambient 
air is drawn in at the rear of the pod, across the pod elec 
tronics, and up through the top of the pod into the bottom 
chassis. Once inside the mainframe, it joins air coming from 
the base of the front panel, goes across the power supply 
and the PC system printed circuit board, and exhausts 
through the rear panel. Our worst-case pod, dissipating ap 
proximately 50 watts, experiences an air temperature rise of 
only 16Â°C. The temperature rise in the mainframe is 12Â°C 
above the system board and 19Â°C above the power supply. 

1 ComitÃ© International Special des Perturbations Radioelectriques (International Special 
Committee on Radio Interferencel. 

All of these temperatures remain well below what we can 
tolerate given the temperature limitations of the disk drives 
and the LCD. The maximum allowable ambient operating 
temperature of the hard disk drive and color LCD is 4CPC, 
and that of the flexible disk drive and monochrome LCD is 
45rC. The minimum allowable storage temperature of either 
display is -25 C. Therefore, the full HP class Bl temperature 
specification had to be waived in deference to these compo 
nents. The monochrome LCD experiences extreme response 
sluggishness at very low temperatures and washes out at 
high temperatures (adjusting the contrast control does not 
help). The color LCD experiences no such performance or 
visual degradation at the temperature extremes. 

The supersoak and condensation portions of our humidity 
testing were not done because the LCDs and disk drives do 
not allow them. The polarizers on the LCDs cannot tolerate 
standing water for any length of time. However, we have an 
optical film applied to both LCDs for anti-glare and protec 
tion from scratching and chemical contamination. The other 
humidity testing done on the instrument presented no 
problems. 

While our altitude testing indicated no problems, we learned 
a valuable lesson regarding altitude effects. The large label 
that covers the ribbing on the underside of the display cover 
lid entraps air in the dozens of hermetically sealed pockets 
it forms. When an instrument built at a 6000-foot altitude 
(like Colorado Springs) made its way to sea level, these 
pockets collapsed a little causing an unacceptable dimpling 
effect in the label. As an interim remedy, we had to machine 
vents into the top of one rib in each pocket to allow the 
pressure to equalize. Later, 122 pins were added to the mold 
to provide these vents. 

ESD testing has shown no hard failures up to the 25-kilovolt 
limit. 
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The Microwave Transition Analyzer; 
A New Instrument Architecture for 
Component and Signal Analysis 
The microwave transition analyzer brings time-domain analysis to RF and 
microwave component engineers. A very wide-bandwidth, dual-channel 
front digital a precisely uniform sampling interval, and powerful digital 
signal processing provide unprecedented measurement flexibility, 
including the ability to measure magnitude and phase transitions as fast 
as 25 picoseconds. 

by David J. Ballo and John A. Wendler 

As signal processing capabilities advance, modern micro 
wave and radio frequency (RF) systems are becoming more 
and more sophisticated. Pulsed-RF signals, once used only 
for radar applications, are increasingly being used in com 
munication systems as well. These signals routinely have 
complex modulation within the pulse, especially frequency 
and phase variations (see Fig. 1). Operating frequencies and 
bandwidths continue to increase, placing additional demands 
on the components of the systems. 

Engineers responsible for the design and testing of such 
components and systems often need to measure them under 
the same dynamic conditions as those in which they are 
used. For example, it may be necessary to measure a de 
vice's response to phase coding or linear frequency chirp 
inside an RF pulse. 

Measurements with traditional frequency-domain instrumen 
tation are often insufficient to characterize and understand 
fully the operation of components in dynamic signal environ 
ments. Before the microwave transition analyzer introduced 
in this article, no single instrument could handle the diverse 
range of measurements required for dynamic testing at micro 
wave frequencies. In addition to the new measurements it 
makes, this analyzer can perform many of the measurements 
previously requiring the use of network, spectrum, dynamic 
signal, and modulation analyzers, as well as oscilloscopes, 
counters, and power meters. 

Importance of the Time Domain 
A key benefit of the microwave transition analyzer is that it 
brings time-domain analysis to RF and microwave compo 
nent engineers. In addition to its use in pulsed-RF testing, 
the time domain is essential to characterizing and under 
standing nonlinear devices because one can clearly and intu 
itively see the relationship between the input and output 
signals. As an example, both signals in Fig. 2 would appear 
identical if displayed on a spectrum analyzer. Even if the 
phase of the harmonics were known, the differences be 
tween the signals would not be immediately obvious. When 
viewed in the time domain, however, it is clear that signal 1 

is clipped (the output of a limiter, say), while signal 2 has 
crossover distortion (what might be seen at the output of a 
Class-B amplifier, for example). Without the time domain, 
engineers have had to guess at the underlying causes of ob 
served frequency-domain behavior. The ability to view micro 
wave signals in the time domain has also proved to be ex 
tremely valuable to designers that are using CAE microwave 
design simulators, such as HP's MDS. Now simulations 
based on circuit models can be easily compared to actual 
measurements in both the time domain and the frequency 
domain. 

Historically, most measurements on high-frequency non 
linear devices have been performed in the frequency domain. 
Often, this has been because of inadequacies in time-domain 
instrumentation. When frequency-domain information is of 
prime concern, spectrum analyzers are superb in their abil 
ity to display harmonic, modulation, and spurious signals 
with a large dynamic range. However, without the phase of 
the frequency components, the time-domain signal cannot 
be reconstructed. Network analyzers are excellent for per 
forming linear, small-signal, frequency-domain testing, but 
they are limited in their ability to characterize nonlinear 
devices. The addition of harmonic and offset sweep capabil 
ity in network analyzers has helped, but the time-domain 
perspective is still missing. 

For envelope analysis of pulsed-RF signals, spectrum ana 
lyzers offer some limited time-domain capability. Recently, 
network analyzers have been adapted for pulsed-RF time- 
domain testing as well. Because of the architecture of these 
instruments, the intermediate frequency (IF) bandwidth 
imposes an upper limit on the measurement bandwidth. The 
result is minimum measurable edge times of greater than 
100 ns. The microwave transition analyzer's architecture 
does not have this restriction. Edge speed is limited only by 
the RF bandwidth. Consequently, magnitude and phase mea 
surements on pulses with rise times as fast as 25 ps are pos 
sible. Fig. 3 shows an example of a microwave transition 
analyzer measurement. 
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Fig. 1. Examples of complex modulation, (a) A phase coded RF 
pulse. The waveform and magnitude demodulation are shown in 
the upper half. The carrier's phase with respect to a CW reference 
is shown in the lower half, (b) Frequency modulation inside an RF 
pulse. The waveform and magnitude demodulation are shown at 
the top, the frequency demodulation is shown in the middle, and 
the magnitude spectrum of the pulse is shown at the bottom. 

The ability to measure narrow pulses in the time domain can 
also be used to determine the impulse response (and there 
fore magnitude, relative phase, and group delay) of frequency 
translation components such as mixers and receivers. By 
stimulating these devices with a narrow pulse of RF energy, 
time-domain distortion can be directly observed. Often, it is 
the time-domain distortion that, is of interest, even though it 

may be specified indirectly as magnitude and phase flatness 
versus frequency. By transforming the input and output 
pulses to the frequency domain with the built-in fast Fourier 
transform (FFT) and computing their ratio, the transfer 
function is obtained. From this, familiar results of magni 
tude and group delay versus frequency can be displayed. 
Network analyzers are only able to measure the phase and 
group to of frequency translation components relative to 
a reference or "golden" device. 

It is much easier to measure nonlinear devices at low fre 
quencies than at RF and microwave frequencies. At low fre 
quencies, general-purpose oscilloscopes readily show time- 
domain behavior, and dynamic signal analyzers provide both 
magnitude and phase in the frequency domain. The only tool 
available for high-speed time-domain measurements before 
the microwave transition analyzer has been the high- 
frequency sampling oscilloscope. Initially, sampling oscillo 
scopes were purely analog instruments, and in the past few 
years have incorporated digital storage and other enhance 
ments such as markers. However, these instruments have 
not enjoyed widespread acceptance from RF and microwave 
engineers for several reasons. The first is the difficulties 
involved in achieving reliable external triggering at high fre 
quencies and small signal levels. High-speed sampling oscil 
loscopes have enjoyed the most success for use with digital 
signals where voltage levels are generally large and triggers 
are not difficult to obtain. Secondly, traditional sampling 
oscilloscopes are not very sensitive, especially compared to 
network and spectrum analyzers. The microwave transition 
analyzer incorporates selectable filters to decrease noise 
without limiting the signal bandwidth. The resulting increase 
in sensitivity combined with internal triggering across the 
full RF bandwidth greatly aids in the measurement of small 
signals. 

Excellent sensitivity also helps overcome a limitation of 
sampling oscilloscopes for high-input-impedance measure 
ments (>50 ohms). Until recently, it has been very difficult 
to obtain probes with low enough parasitic capacitance to 
be useful at microwave frequencies. Companies now offer 
solutions for high-frequency passive probing, but signal at 
tenuation is significant. This signal attenuation is not a prob 
lem for the microwave transition analyzer because of its 
high prob This has been especially beneficial for prob 
ing monolithic microwave integrated circuits (MMICs) at the 
wafer level. 

Finally, the operation of high-speed oscilloscopes has not 
been optimized for RF and microwave applications, where 
terminology is often different from that used in digital design. 
The user interface of the microwave transition analyzer uses 
units and formats that are familiar to RF and microwave 
engineers. For example, log-magnitude displays of pulsed- 
RF signals are readily available, and marker annotation can 
be in dBm or dBc as well as volts. 

Microwave Transition Analyzer 
The HP 71500A microwave transition analyzer (Fig. 4) is a 
two-channel, sampler-based instrument with an RF band 
width covering from dc to 40 GHz. The instrument is called 
a transition analyzer because of its ability to measure very 
fast magnitude and phase transitions under pulsed-RF con 
ditions. However, this name does not encompass the full 
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range of its measurement capability. The microwave transi 
tion analyzer can best be described as a cross between a 
high-frequency sampling oscilloscope, a dynamic signal 
analyzer, and a network analyzer. 

Like a digital sampling oscilloscope, the microwave transi 
tion analyzer acquires a waveform by repetitively sampling 
the input, that is, one or more cycles of the periodic input 
signal occur between consecutive sample points. However, 
unlike an oscilloscope, the sampling instant is not determined 
by an external high-frequency trigger circuit. Instead, the 
sampling frequency is synthesized, based on the frequency 
of the input signal and the desired time scale. A synthesized 
sampling rate is an attribute that the microwave transition 
analyzer shares with dynamic signal analyzers. Also in com 
mon is an abundance of digital signal processing capability. 
The FFT, for example, allows simultaneous viewing of the 
time waveform and its frequency spectrum. However, unlike 
a dynamic signal analyzer, the microwave transition analyzer 
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Fig. 3. The microwave transition analyzer can measure edge 
speeds on modulated waveforms as fast as 25 ps. 

does not have an anti-aliasing filter at its input. The sampling 
frequency is automatically adjusted to achieve a controlled 
aliasing of the frequency components of the input signal. 
Finally, like a network analyzer, the microwave transition 
analyzer can be configured to control a synthesized signal 
source for the characterization of devices over frequency or 
power ranges. It can also receive a frequency that is offset 
from or a harmonic of the source frequency, and it can pro 
vide frequency and power sweeps at a particular point within 
a pulse of RF, on pulses as narrow as 1 ns. 

Architecture 
Fig. 5 shows a simplified block diagram of the microwave 
transition analyzer. The analyzer has two identical signal 
processing channels. Each channel samples and digitizes 
signals over an input bandwidth of dc to 40 GHz. The chan 
nels are sampled simultaneously (within 10 ps), permitting 
accurate ratioed amplitude and phase measurements. A 
single synthesized low-noise oscillator drives a step recov 
ery diode, the output of which is split into two pulse trains 
that drive the microwave samplers. The microwave sam 
plers and the analog-to-digital converters (ADCs) are run at 
the same frequency. The maximum sampling frequency is 
20 MSa/s (20 million samples per second). 

The signal at the output of the samplers is processed by a 
10-MHz-bandwidth low-pass IF strip. The IF (intermediate 
frequency) circuitry includes a programmable shaping am 
plifier to compensate for the sampler's IF response roll-off, 
60 dB of step gain to optimize the signal level into the ADC, 
and variable low-pass filtering to remove noise and sampler 
feedthrough. The trigger circuitry is at the end of the analog 
path. Triggering on IF signals (instead of RF input signals) 
allows the microwave transition analyzer to be internally 
triggered to 40 GHz. Enhancements to the hardware trigger 
are available through the use of digital signal processing. 

Periodic Sampling 
The mathematical analysis of periodic functions was begun 
in the early 19th century by Jean-Baptiste-Joseph Fourier. 
Fourier's theorem introduced the techniques for decomposing 
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Fig. and Named for its ability to measure very fast magnitude and 
phase transitions under pulsed-RF conditions, the HP 71500A 
microwave transition analyzer (top instrument) is part high- 
frequency sampling oscilloscope, part dynamic signal analyzer, 
and part network analyzer. The HP 71500A consists of the HP 
78020A microwave transition analyzer module and the HP 70004A 
mainframe. The bottom instrument shown here is the HP 83640A 
synl hesized sweeper. 

any periodic waveform into a sum of harmonically related 
sinusoids. The Fourier series is a frequency-domain repre 
sentation of the original time function and is used to sim 
plify the description and provide insight into the function's 
underlying characteristics. 

The sampler in the microwave transition analyzer is driven 
by a constant-frequency sampling signal. Because the sam 
pler drive is periodic, Fourier analysis can be used to under 
stand the sampler's operation. Often, periodic signals or 
systems responding to periodic signals are described and 
analyzed in the frequency domain. Transformations be 
tween the time and frequency domains replace convolution 
operations in one domain with multiplication in the other. 

Filtering, a convolution operation in the time domain, is 
more easily interpreted as frequency-domain multiplication. 
Alternatively, a mixer multiplies two signals in the time do 
main, but the result is expressed as frequency-domain 
translation, a convolution operation. Why convolution is the 
analytical mechanism for realizing frequency translation is 
explained in "Frequency Translation as Convolution" on 
page 61. 

An ideal sampler driven by a periodic sampling pulse can be 
considered a switch that briefly connects the input port to 
the output port at a periodic rate. When the switch is closed, 
the output signal is the input signal multiplied by unity. 
When the switch is open, the output signal is grounded, that 
is, the input signal is multiplied by zero. Thus, the signal at 
the sampler's output is formed as the product of the input 
signal and the periodic pulse defining the switch state as a 
function of time. As in the mixer example on page 61, time- 
domain multiplication results in frequency-domain convolu 
tion. is frequency spectrum of the sampler's input signal is 
convolved with the spectrum of the periodic pulse to produce 
the spectrum of the sampler's output (IF) signal. 

The frequency spectrum of a periodic pulse is composed of 
delta functions at the fundamental repetition frequency and 
all multiples (harmonics) of this frequency. This infinite set 
of impulses in the frequency domain, sometimes called a fre 
quency comb, inherits a magnitude and phase profile accord 
ing to the time-domain pulse shape. A narrow, rectangular 
pulse imparts a sin(f)/f roll-off characteristic to the frequency 
comb. The first null of the response occurs at a frequency 
equal to the reciprocal of the pulse width and the 3-dB atten 
uation frequency occurs at 0.443 times this value. Funda 
mental to wide-bandwidth sampling is achieving a very nar 
row sampling pulse or aperture. The sampling aperture in 
the microwave transition analyzer is less than 20 ps. 

The sampling front end of the microwave transition analyzer 
converts the high-frequency input signal to a low-frequency 
IF signal suitable for digitization and subsequent numerical 
processing. Depending on the application, three different in 
terpretations of the sampling process are possible: frequency 
translation, frequency compression, and a combination of 
translation and compression. 

CH2   Â» 

M i c r o w a v e  
Samplers 

Fig. 5. Simplified block -lin (if the HI1 7ir>()()A microwave Inmsition analyzer. 
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Fig. 6. Sampling used to translate a frequency band, (a) Input 
spectrum, (b) Sampling comb, (c) The sampler output spectrum 
is the convolution of the waveforms in (a) and (b). (d) Filtered 
output. 

Frequency Translation 
Nonrepetitive or single-shot events can be captured by sam 
pling the input signal at a rate greater than twice the input 
bandwidth. This is known as the Nyquist criterion. However, 
maintaining this criterion does not imply that the sampling 
rate must be greater than twice the input signal's highest 
frequency. If the RF bandwidth of the sampler is adequate, 
narrowband information on a high-frequency carrier can be 
captured by low-frequency sampling, as long as a sampling 
rate of approximately twice the modulation bandwidth is 
maintained. Sampling the high-frequency signal translates 
the signal to baseband. 

Samplers are often used in place of mixers for frequency 
conversion â€” for example, in the front ends of many general- 
purpose network analyzers. In the case of translation only, a 
given narrow frequency band is converted to baseband by 
an appropriate choice of sampling frequency. Fig. 6 diagrams 
the conversion process. The spectrum of the input signal is 
shown in Fig. 6a and the frequency comb of the sampling 
pulse is shown in Fig. 6b. The sampling frequency, that is, 
the spacing between the teeth of the frequency comb, is 
chosen such that the input spectrum lies appropriately posi 
tioned between adjacent comb teeth. The convolution result 
is shown in Fig. 6c. 

Two important considerations in the choice of sampling fre 
quency can be seen from these diagrams. First, the input 
signal bandwidth (Fig. 6a) must be less than one half the 
sample rate. Second, the sample rate must be chosen so the 
input spectrum is entirely contained in a frequency range 
bounded by the nearest sampling harmonic and the frequency 
halfway to the next higher or lower harmonic. If these crite 
ria are not met, the sampler will translate or alias more than 
one component of the input spectrum to the same output 
frequency, causing uncorrectable errors. The maximum sam 
pling rate of the microwave transition analyzer is 20 MSa/s. 
The rate is continuously adjustable (in 1-mHz steps) down 

to a minimum rate of 1 Sa/s and can be phase-locked to an 
external 10-MHz reference. 

The signal at the output of the sampler is amplified and low- 
pass filter before analog-to-digital conversion. This filter 
ing virtually restores the original input spectrum, but it is now 
centered in the much lower IF range (Fig. 6d). Because the 
filter transition from passband to stopband is not immedi 
ate, some undesired high-frequency energy may be included 
in the signal presented to the ADC. In this case, the band 
width of the signal at the ADC exceeds half the sample rate. 
Aliasing occurs as the highest-frequency components are 
folded back on top of the original translated spectrum by 
the sample-and-hold circuit of the ADC. However, unlike 
the aliasing problems mentioned in the previous paragraph, 
the effects of this aliasing can be predicted and corrected 
in software because the aliased components represent 
redundant information. 

In summary, using a sampler with a bandwidth many times 
the sample rate allows the capture of single-shot events in 
the modulation on a high-frequency carrier (see Fig. 7). The 
analysis bandwidth is limited to half the sample rate. 

Frequency Compression 
A second, fundamentally different perspective of the sam 
pling process is useful in the measurement of periodic high- 
frequency signals. Traditionally, these measurements have 
required trigger-based repetitive sampling techniques. In the 
microwave transition analyzer, precision RF trigger circuitry 
is not used. Periodic sampling alone is used to convert a 
strictly periodic input with harmonic components spread 
across a very wide bandwidth to a low-frequency signal with 
harmonic components spread over the narrow IF range. This 
is accomplished by choosing a sampling frequency that con 
verts each component of the input signal into the IF such that 
the harmonic ordering, magnitude, and phase relationships 
of the original input are preserved in the IF signal. The sam 
pling process effectively compresses the wide-bandwidth 
input signal into a low-frequency signal at the IF. 
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Fig. 7. Turn-on characteristic of a synthesizer's output amplifier. 
This single-shot measurement was internally triggered on the 
signal that originated from the enabling of the RF output of the 
synthesizer. The carrier frequency is 5 GHz. 
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Fig. 8. Sampling used to frequency compress a periodic input 
signal, (a) Input signal spectrum, (b) Sampling comb, (c) Expand 
ed frequency scale showing the relationship between the input and 
the sampling signal components, (d) The sampler output signal is 
the convolution of the waveforms in (a) and (b). 

Fig. 8 illustrates the concept in the frequency domain. The 
input spectrum and frequency comb of the sampling pulse 
(including the RF response roll-off) are shown in Figs. 8a 
and 8b. Fig. 8c provides a close-up view of the relative posi 
tioning of the comb lines with respect to the input signal. 
The sampling rate is chosen such that a given harmonic (the 
nth) is positioned x Hz below the input's fundamental fre 
quency. Then, the (2n)th sampling harmonic will be posi 
tioned 2x below the input's second harmonic, the (3n)th 
sampling harmonic will be 3x below the input's third har 
monic, and so on. Fig. 8d shows the result of the convolu 
tion. Each harmonic of the input is converted to a corre 
sponding harmonic of the low-frequency signal at the IF. 

The sampler does not have infinite bandwidth, and the 
sin(f)/f roll-off of the sampling comb attenuates the IF re 
sponses that correspond to input components at the higher 
frequencies. Small amounts of attenuation may be compen 
sated for in software, however, after the signal is digitized. 
The combination of a very narrow sampling aperture and 
software corrections allow the microwave transition analyzer 
to specify a flat response to 40 GHz. 

Viewing this process in the time domain, the sample interval 
is set to be a multiple of the input period plus a small amount 
equal to the effective time between points (Fig. 9). Since the 
sampling interval is not an exact multiple of the input period, 
the sampling instant moves with respect to the input at a 
prescribed increment as the samples are acquired. The effec 
tive time between points is determined by how close the sam 
pling frequency is to a subharmonic of the input frequency. 

Compression Factor. The signal at the IF is a replica of the 
input signal, but at a much lower fundamental frequency. 
\\lien this signal is digitized and displayed, the waveshape 
matches that of the input. The time range indicated on the 
display is calculated by dividing the real time (sample period 
times trace points) by the compression factor (input frequency 
x l/x, where x corresponds to the fundamental frequency at 
the IFâ€” see Fig. 8): 

Time Span = 
(Sample Period) (Number of Trace Points) 

(Input Frequency)/x 

When the microwave transition analyzer is used for repeti 
tive and the input signal must be strictly periodic, and 
the period must be known to high accuracy. If the frequency 
that the analyzer assumes for the input signal is near but not 
exactly equal to the frequency of the signal being measured, 
the IF will be shifted in frequency by an amount equal to the 
difference. The resulting measurement will show an erro 
neous time scale, the error equal in percentage to the fre 
quency error of the IF signal. Thus, a small RF inaccuracy 
can result in a very large time-scale error. The ability to fre 
quency-lock the microwave transition analyzer's sampling 
rate to the signal being measured (by sharing a common 
reference frequency with the stimulus), removes this source 
of error. The resulting time scale accuracy is specified to 1 
ps â€” better than any current trigger-based oscilloscope. 

Triggering. To keep the display "triggered," low-frequency 
trigger circuitry is connected to the IF signal and used to 
initiate the storage of a data record relative to a rising or 
falling edge. Data samples in the buffer before the trigger 
occurrence are displayed as negative time (pretrigger view). 
Through the combination of periodic sampling and a low- 
frequency trigger circuit, the microwave transition analyzer 
is able to trigger internally on periodic signals across the full 
40-GHz input bandwidth and offer negative-time capability 
without delay lines. 

IF Filtering for Noise Reduction. As mentioned earlier, the sig 
nal at the output of the sampler is low-pass filtered before 
analog-to-digital conversion. In Fig. 8d the bandwidth cho 
sen for this filtering is less than half the sampling rate. Any 
IF components above the band edge of the filter correspond 
to input harmonic components beyond the specified input 
bandwidth of 40 GHz and may be filtered off. Filtering the IF 
signal to a bandwidth narrower than half the sampling rate 
means that not all of the noise across the 40-GHz input band 
width is converted to noise on the IF signal. Thus, noise is 
removed from the displayed signal without affecting the 

Fig. 9. Periodic sampling in the time domain. 
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Fig. 10. Filtering the IF signal removes noise but retains the 
underlying wave shape. 

waveshape. The result is cleaner displays and improved 
sensitivity (by more than 20 dB) compared to conventional 
trigger-based sampling oscilloscopes (see Fig. 10). 

Translation and Compression 
The perspectives of translation and compression are com 
bined to analyze the third use of the microwave transition 
analyzer's sampling front end. The application is measuring 
signals composed of broadband, periodic modulation on a 
high-frequency carrier. Examples include pulsed-RF signals 
with narrow pulse widths or fast edge speeds. Proceeding as 
before, the spectrum of the input signal and the frequency 
comb of the sampling pulse are shown in Figs, lla and lib, 
respectively. Fig. lie has an expanded frequency scale show 
ing the relative positioning of the input's spectral lines and 
those of the sampling pulse. Two variables, x and y, are intro 
duced in this figure, and are related to the concepts of com 
pression and translation, respectively. The sampling frequen 
cy is chosen such that the signal's pulse repetition frequency 
(PRF) is slightly greater (x Hz) than a multiple of the sam 
pling rate. In other words, the time between sampling 
instants is slightly greater than an integral number of input 
pulse repetition periods. As can be seen from the diagram, 
the frequency separation between a given signal component 
and the nearest sampling harmonic increments by x Hz 
when considering the next-higher signal component. Conse 
quently, the spacing of the corresponding components in the 
sampler's output signal is x Hz, resulting in a compression 
factor of PRF/x. 

In Fig. lie, the spectral center of the input signal is shown 
to be offset by y Hz from the nearest sampling harmonic. 
Therefore, the signal at the output of the sampler is centered 
at y Hz, as shown in Fig. lid. If the offset y is allowed to 
decrease by a change in the input carrier frequency, the sam 
pler output components are translated toward one another 
as indicated by the dashed arrows. If y becomes too small, 
the components will partially overlap and distort the spec 
trum. Likewise, if y is increased, the sampler's output com 
ponents move opposite to the directions indicated and will 
overlap as y approaches half the sampling rate. 

For a given pulsed-RF input signal with an arbitrary carrier 
frequency, the values of x and y cannot be independently 
controlled by adjustments in the sampling rate alone. If the 
sampling rate is set to achieve the desired compression fac 
tor (PRF/x), there is no remaining degree of freedom for 
adjusting the spectral offset (y) to avoid overlap. One solu 
tion is to provide a mechanism for automatically adjusting 
the carrier frequency under control of the microwave transi 
tion analyzer. In many cases, the microwave transition ana 
lyzer is used in a stimulus-response configuration similar to 
that of a network analyzer. If the carrier source is under 
control, the carrier frequency control can be used to adjust 
the spectral offset independent of the sampling rate. 

Often, however, the microwave transition analyzer does not 
control the carrier source, or it is desired that the carrier 
frequency not be modified. In these cases, the simultaneous 
requirements on the sample rate are achieved by slight mod 
ifications to either the requested time span or the number of 
trace points. The parameter to be modified is determined by 
the user. Remembering that the displayed time span is equal 
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Fig. 11. Sampling used to analyze periodic wideband modulation, 
(a) Input signal spectrum, (b) Sampling comb, (c) Expanded fre 
quency scale showing the relationship between input and sampling 
signal components, (d) The sampler output signal is the convolution 
of the waveforms in (a) and (b). (e) The IF spectrum on an expand 
ed frequency scale, showing the spacing of the signal components. 
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Fig. sampling Most transition signal processing algorithms require sampling the input signal at a uniform interval, (a) In I he microwave transition 
analyzer, sampling rely is driven at a synthesized rate, resulting in very precise sample timing, (b) Conventional sampling oscilloscopes rely 
on high-frequency trigger circuitry for timing accuracy, so the sampling interval can be considerably more uncertain. 

to the real time divided by the compression factor, the 
following equation results: 

Time Span = 
(Sample Period) (Number of Trace Points) 

PRF/x 

Since the input PRF is a constant and x is a function of the 
PRF and the sampling rate (see Fig. lie), the above equation 
relates the three variables: time span, number of trace points, 
and sampling period. Fixing either the time span or the num 
ber of trace points and slightly adjusting the other quantity 
results in a small change in the sampling period. A small 
change in sampling rate causes a much larger shift in the har 
monic nearest the input carrier. In this fashion, the centering 
of the spectrum at the sampler's output is controlled. 

Numerical Processing 
Discussion to this point has concentrated on how the sam 
pling process can be used to translate and/or compress a 
high-frequency input signal into a low-frequency signal at 
the IF suitable for digitization. Equally important for the 
microwave transition analyzer is the processing done on 
the signal after it has been digitized. Conventional digital 
signal processing algorithms, such as digital filtering, 

demodulation, and FFT analysis, assume that the input 
signal has been sampled at an exact, uniform rate. In the 
microwave transition analyzer, the sampling interval is syn 
thesizer-based, resulting in sample-to-sample timing that is 
precisely uniform. A single trigger event initiates the storage 
of an entire trace of data. By contrast, conventional sam 
pling oscilloscopes rely on high-frequency trigger circuitry 
to provide a consistent sampling interval. Since a different 
trigger event is used for the measurement of each data point, 
any triggering uncertainty results in sample-to-sample timing 
variations. Because the triggering accuracy is dependent 
both on the (trigger) signal characteristics and the amount 
of trigger delay selected, the resulting sampling interval can 
become significantly nonuniform under certain conditions, 
reducing the options for further numerical processing (see 
Fig. 12). 

Analytic Signal Representation. One of the first operations 
applied to the sampled data is the creation of the quadrature 
function using the Hubert transform. This quadrature func 
tion is combined with the original data to form a complex- 
valued representation of the waveform called the analytic 

signal. Just as complex-valued phasor representations 
simplify the analysis of linear circuits, the analytic signal 
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simplifies the manipulation and analysis of modulated wave 
forms. Use of the analytic signal representation also allows 
for vector normalization of traces, an operation normally 
found in network analyzer systems. 

RF and User Corrections. One of the more obvious uses for 
additional processing of the sampled data is to compensate 
for nonideal conditions in the analog circuitry. As men 
tioned, the sampler has a frequency response characteristic 
largely determined by the aperture time of the sampling 
pulse. The magnitude response of the sampler is measured 
at the factory and stored inside the analyzer. This data is 
then used to correct for the sampler roll-off in subsequent 
measurements. Regardless of whether the sampler is used 
for translation or compression, an assumed, unique mapping 
exists between IF frequency and input RF frequency. When 
the IF signal is digitized, an FFT is used to convert the re 
sponse into the frequency domain. The IF frequencies are 
mapped into RF frequencies, the appropriate correction at 
each frequency is applied, and the result is then transformed 
back to the time domain for display. The same processing 
routines are also available for user-definable filtering or 
corrections. User-defined corrections are useful in compen 
sating for cabling or fixturing losses. Filtering applications 
might include simulating the magnitude and phase charac 
teristics of a transmission channel to predict what effects 
the channel will have on specific signals. 

Frequency-Domain Measurements Using the FFT. The ability to 
execute transformations quickly between the time and fre 
quency domains is important to the operation of the micro 
wave transition analyzer. These tasks are accomplished by a 
pair of digital signal processing chips (one per channel) 
tightly coupled to the ADC memory. If the user requests a 
frequency-domain display, the signal is shown after frequen 
cy corrections are applied without the transformation back 
to the time domain. Separate frequency-domain controls 
allow the user to zoom in on a narrow portion of the original 
frequency span. This is accomplished by processing a longer 
time record with the FFT and displaying only part of the 
frequency outputs. 

As mentioned above, the microwave transition analyzer as 
sumes a unique mapping between the IF and RF frequencies, 
resulting in a replicated version of the input signal at the IF. 
However, if a second, unrelated signal is present at the input, 
it too is converted to the IF and becomes part of the sampled 
signal. The components of this second signal will fall at seem 
ingly to IF positions and will not correspond at all to 
the IF-to-RF mapping that the first signal obeys. Except for 
the operating mode described below, the microwave transi 
tion analyzer is designed, like most oscilloscopes, for the 
measurement and display of a single signal. 

If multiple, nonharmonically related signals are known to be 
present at the input, the microwave transition analyzer can 
be instructed to measure these signals independently using 
the table mode of operation. In the table mode, the funda 
mental and harmonics of up to five signals are measured, 
using the FFT to measure each component of each signal 
individually. The sampling frequency is chosen to avoid con 
verting different spectral components to the same frequency 
at the IF. The results are displayed in tabular form (see Fig. 
13). The table can be updated continuously for only one of 
the signals or for all of them. If a waveform display is desired, 
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Fig. (a) Microwave transition analyzer table mode displays, (a) 
The output of a mixer shown in the time-domain display at the top 
is the the of several signals. The table displayed at the 
bottom provides information about the frequencies present, (b) 
The table is configured to display information for only one of the 
signals present. The second trace at the top is constructed from 
this measurement data. 

a data trace can be constructed according to the table values 
and the specified time span. This capability allows the micro 
wave transition analyzer to display time-domain signals in a 
frequency-selective fashion, combining some of the attributes 
of both oscilloscopes and spectrum analyzers. 

Phase Trigger. Another use of the microwave transition ana 
lyzer's FFT resources is in measuring low-level or noisy sig 
nals. Trace averaging is used by oscilloscopes to reduce 
noise on a displayed waveform. However, averaging can 
work only if the waveform is reliably triggered, which is 
difficult on low-level or noisy signals. In the microwave tran 
sition analyzer, waveform capture is not dependent on reli 
able triggering, but on knowing the input frequency and sam 
pling at the proper synthesized rate. If at least one period of 
the signal is collected into memory on every sweep, the trig 
ger point will always be somewhere in this record of data. 
The microwave transition analyzer introduces a special 
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Fig. with \Tery small or noisy signals can be reliably triggered with 
the microwave transition analyzer's phase trigger. Sweep-to-sweep 
averaging can then be used to reduce the noise. 

trigger mode, called phase trigger. The trigger value is speci 
fied in terms of the phase of the fundamental component of 
the signal. An FFT is used to measure the phase of the fun 
damental at the midpoint of the time record. From this, the 
index in the record that corresponds to the trigger point is 
determined, and the correct portion of the record is copied 
to the display trace. Although the trigger point in the larger 
memory record may move about from sweep to sweep, the 
display trace stays triggered. The result is that processing 
gain (via the FFT) has been applied to extract the trigger 
information, allowing stable triggering on even very noisy 
signals (Fig. 14). Trace averaging can then be used to reduce 
the noise on the displayed waveform. 

Component Test Systems 
Electronic components are most often tested by measuring 
their response to a given stimulus. The stimulus source can 
be anything from an impulse generator to a sweep oscillator 
or a synthesizer. The measurement instruments include os 
cilloscopes, spectrum analyzers, and dedicated receivers. 
Stimulus and measurement functionality are frequently com 
bined to form a stimulus-response system. Network analyz 
ers, spectrum analyzers with tracking sources, and oscillo 
scopes with built-in step generators are examples of systems 
in which the stimulus source is controlled directly by the 
measurement instrument. The microwave transition ana 
lyzer, with its built-in pulse generator and ability to control 
synthesizers over a private HP-IB (IEEE 488, IEC 625), can 
be configured as a versatile stimulus-response system for 
component or system test. 

An advantage of configuring the microwave transition ana 
lyzer as a stimulus-response system for time-domain mea 
surements is that the analyzer is always certain of the signal 
frequency. Configuring the stimulus under the control of the 
microwave transition analyzer and sharing a common 10-MHz 
reference ensures agreement between the assumed and ac 
tual input frequencies. Additionally, indirect adjustment of 
the stimulus via the controls of the microwave transition 
analyzer allows interesting new time-domain capabilities. 
One is the ability to hold a fixed number of signal periods on 

the display regardless of the stimulus frequency. In other 
words, the time range is automatically updated at any change 
of stimulus frequency. Using this feature, designers can see 
changes in a device's response as it operates over a range of 
frequencies, without the continuous time scale adjustments 
that would be required with a conventional oscilloscope. 

RF and microwave design engineers are familiar with the use 
of synthesized signal generators for testing their devices. 
However, for designers requiring a nonsinusoidal stimulus, 
synthesized pulse generators are not generally available. 
The repetition interval of most pulse generators is not con 
stant enough for repetitive sampling with the microwave 
transition analyzer. To ease this problem, the analyzer pro 
vides a variable-rate, TTL-level output pulse that is frequency- 
locked to the sample rate synthesizer. The pulse width and 
period are adjustable in 100-ns increments. This output can 
be used directly or as the trigger input to a standard pulse 
generator, thereby locking the repetition rate to the time base 
of the microwave transition analyzer. If the pulse is used for 
modulating a carrier, the analyzer needs to know the carrier 
frequency to sample the signal at the correct rate. (See the 
earlier discussion on translation and compression.) For 
stimulus-response testing under pulsed-RF conditions, 
this is most easily accomplished by having a configured 
synthesizer supply the carrier. 

The automatic control of a sinusoidal signal generator by 
the microwave transition analyzer results in an instrument 
system with the flexibility to measure the response of a de 
vice as a function of time, input frequency, or input power. 
In addition to showing time-domain responses like an oscil 
loscope at various input frequency and power levels, the 
analyzer can automatically step the source across a frequency 
or power range and provide measurement functionality simi 
lar to that found in network analyzers. At each point in a 
frequency or power sweep, the magnitudes and phases of 
the sinusoids at the two input channels are measured by col 
lecting a set of time samples and applying the FFT. Increasing 
the number of time samples used in the FFT is equivalent to 
decreasing the processing bandwidth and results in a more 
accurate measurement (at the expense of sweep speed). 
Because of the frequency discrimination provided by the FFT, 
the measured frequency need not be the same as the stimu 
lus. Conversion loss in devices responding at frequencies 
that are offset from or harmonic multiples of the stimulus is 
easily measured with the microwave transition analyzer. 

Signal Test Applications 
For signal test as opposed to component test applications, 
the microwave transition analyzer is used as a stand-alone 
instrument. Repetitive sampling still requires the signal to be 
periodic, but radar and communication systems are increas 
ingly moving to highly stable, synthesizer-based designs 
locked to a common reference. Hewlett-Packard's frequency 
agile signal simulator (FASS) is an example. Many times, the 
testing of these systems can be accomplished with the system 
in a periodic operating mode. 

In applications where the signal frequency is unknown, the 
microwave transition analyzer can be used like a counter to 
determine the signal frequency to high precision. This is 
accomplished by taking several measurements of the input 
signal at different sampling rates and comparing the change 
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Fig. operation. Processing flow in the stationary sampling mode of operation. 

in the IF to the change in sampling rate.1 For CW signals 
with at least a 10% duty cycle, the microwave transition ana 
lyzer will determine the frequency to an accuracy of 1 part 
in 108. If multiple signals are present at the input, the funda 
mental frequency for each (up to a maximum of five) will be 
returned. The analyzer is also able to measure the carrier 
frequency of pulse modulated signals for pulse widths as 
narrow as 300 ns. Because the data acquisition for this mea 
surement is single-shot, the pulse repetition interval need 
not be constant. 

Stationary Sampling Mode 
A measurement mode known as stationary sampling offers 
significant enhancements to the microwave transition analyz 
er's pulsed-RF capabilities. Stationary sampling is a technique 
that substantially reduces the trace noise on time-domain 
displays, resulting in increased sensitivity and dynamic 
range. Furthermore, it is through stationary sampling that 
pulsed network sweeps of frequency and power are 
achieved. Fig. 15 illustrates the process. 

A prerequisite for stationary sampling is that the carrier fre 
quency is not a harmonic multiple of the modulation period. 
That is, the modulation is not coherent with the carrier. Un 
der this assumption, if the microwave transition analyzer 
samples the signal at a rate equal to the modulation rate, the 
sampling instant stays fixed with respect to the modulating 

envelope, but not with respect to the carrier. This is illus 
trated at the bottom of the figure. The sampling rate is set to 
be either equal to or an exact submultiple of the pulse repe 
tition frequency. The resulting set of samples describes the 
carrier waveform at a particular point in the pulse. The data 
is then passed through a narrowband filter implemented 
with an FFT. This filtering acts to suppress noise and sepa 
rate the carrier fundamental from dc and harmonic compo 
nents. The complex-valued FFT output bin corresponding to 
the frequency of the sampled carrier represents one (ana 
lytic) time sample of the filtered waveform. This output 
becomes one data point in the final trace. 

The next trace point needs to be taken at a different position 
with respect to the modulating envelope. To accomplish 
this, is internal synthesizer controlling the sampling rate is 
phase-shifted a precise amount. This moves the sampling 
instant the desired time increment along the modulating 
envelope. A new set of carrier samples is collected, pro 
cessed with the FFT, and another complex valued output 
point is stored to the final trace. The process is repeated for 
every trace point. The amount of filtering that is applied in 
creating the output trace is adjustable by the user and is 
directly related to the number of time samples used in the 
FFT. 
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The sampling and filtering process separates the RF com 
ponent from the dc component at each point in the pulse. 
Depending on which FFT output bin is recorded, either the 
dc feedthrough or the RF portion of the input waveform is 
ultimately displayed (see Fig. 15). This eliminates the re 
quirement for the user to supply external filtering when 
performing these measurements. Also, measurements of 
carrier distortion at a particular point in the pulse are pos 
sible by setting the time span to zero. The FFT filtering in 
Fig. 15 is omitted and the sampled carrier is directly dis 
played. The measurement point is controlled by adjusting 
the trigger delay. Transforming the carrier waveform into 
the frequency domain allows easy measurement of the 
distortion components. 

For pulsed network analyzer sweeps, when the sweep axis 
is frequency or power, the operation is very similar to that 
described for time sweeps. A triggering process aligns the 
measurement point with respect to the modulating enve 
lope. Then, instead of phase shifting the sample rate synthe 
sizer between each trace point, the carrier's frequency or 
power is automatically stepped. The result is a measure of 
the response of the device as a function of carrier frequency 
or power at a particular point in the modulating envelope. In 
conventional pulsed network analyzers, the IF bandwidth 
sets limitations on edge speed and pulse width. In the micro 
wave transition analyzer, the measurement is performed 
using repetitive sampling techniques, and the modulation 
bandwidth is limited only by the sampler's RF response. 

User Interface Design 
The user-interface design of an instrument as versatile as 
the microwave transition analyzer required considerable 
work. Its feature set includes functionality found in a variety 
of microwave test equipment. The interface must not only 
provide control for displays of voltage versus time like an 
oscilloscope, magnitude versus time like a peak power meter, 
and phase or frequency versus time like a modulation do 
main analyzer, but must also allow for the automatic control 
of an external synthesizer, providing CW and pulsed network 
measurements of magnitude and phase versus frequency or 
power. Additionally, the FFT can be used for harmonic anal 
ysis, showing a display similar to that of a spectrum analyzer, 
and the automatic signal acquisition routines can be used to 
provide functionality found in CW and pulse counters and 
vector voltmeters. 

The challenge in any interface design is to balance the re 
quirement of complete functional access with the need for 
simple, intuitive controls for specific, targeted applications. 
One approach suggested early in the development cycle was 
to have the microwave transition analyzer assume different 
instrument personalities. For example, the user would 
choose an oscilloscope interface for one measurement, then 
switch to a network analyzer interface for a second mea 
surement, then to a spectrum analyzer for another, and so 
on. The appeal of this approach is obvious: users need not 
learn a new interface. But as the implementation developed, 
the problems began to outweigh the benefits. 

For example, an interface constructed according to this logic 
would forbid the simultaneous display of a voltage-versus- 
time waveform and its frequency spectrum, thereby losing a 
valuable perspective in the analysis of nonlinear operation. 
One of the major contributions of the microwave transition 

analyzer is its multidomain capabilities, and the interface 
needed to emphasize this strength. Less important, but still 
significant, is the fact that marker operation is substantially 
different for oscilloscopes, spectrum analyzers, and network 
analyzers. Any implementation that might impose three dif 
ferent marker systems on the user would be hard to describe 
as user-friendly, yet a common marker system weakens the 
implementation of instrument-specific personalities. Most 
important, measurement features unique to the microwave 
transition analyzer have no home in such an interface. Real 
izing this, the designers set out to create a versatile core 
interface targeted at two application areas: pulsed-RF or 
switched-RF component test, and time-domain analysis of 
microwave devices. Later, simplified interfaces for specific 
applications could be developed by drawing features from 
this core. 

Pulsed-RF Testing. The versatility inherent in the architecture 
of the microwave transition analyzer allows a good match to 
the needs of high-speed pulsed-RF characterization. Design 
ers in of area have traditionally required a wide variety of 
test instrumentation. Measurements of magnitude settling 
time are possible by combining an oscilloscope, a broad 
band detector, and a filter to remove the video feedthrough. 
Measuring phase settling time has been much more difficult, 
usually requiring the use of modulation-domain analyzers, 
pulse network analyzers, or custom down-converters, digi 
tizers, and software. The fundamental attributes of the 
microwave transition analyzer's architecture â€” a very wide- 
bandwidth, dual-channel front end, a precisely uniform sam 
pling interval, and powerful digital signal processing â€” pro 
vide the elements for unprecedented measurement flexibility 
in pulsed-RF component test. This, combined with the ana 
lyzer's singular ability to measure magnitude and phase set 
tling times on edges as fast as 25 ps, is the reason for tailoring 
the interface to pulsed-RF testing. 

Making it easy to demodulate a voltage-versus-time display 
of an RF pulse and show magnitude, log magnitude, or 
phase versus time was a key goal of the implementation. 
These sophisticated digital demodulation procedures are 
accessible simply by choosing a display format for the trace. 
The phase slope can be removed mathematically at the 
press of a button, or the phase can be measured with re 
spect to the other channel by defining the trace input as a 
ratio of the channels. On pulse waveforms with excessive 
amounts of video feedthrough, the stationary sampling 
mode can be used to separate the RF and video portions of 
the waveform with digital filtering and display each portion 
independently. Invoking the mode is accomplished by sim 
ply turning on a filter. A variety of additional processing is 
available by defining a trace in terms of digital signal pro 
cessing operations on channels, memories, and other traces 
(see Fig. 16). The result is a powerful digital signal process 
ing system that is available to the user in a form that is easy 
to understand and simple to use. 

Recognizing the limited availability of synthesized pulse 
generators, the design team decided to include one in the 
analyzer. Using this output to control the modulation period 
and a configured synthesizer to supply the carrier means 
that all stimulus adjustments are controlled through the inter 
face of the microwave transition analyzer. Since the analyz 
er needs to know these signal parameters to set the correct 
sampling rate, a configured setup eliminates the (sometimes 
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Fig. 16. The microwave transition analyzer includes a powerful 
trace processing system. The definition shown here for the display 
trace can be used to measure deviation from linear frequency 
chirp. 

. -  

nonobvious) requirement of keeping the microwave transi 
tion analyzer abreast of frequency changes made on the sig 
nal generators. Furthermore, because the analyzer has com 
plete control of the stimulus, network measurements as a 
function of carrier frequency or power are also possible. 
This added flexibility offers the user a multidimensional 
perspective on the device's operation, along measurement 
axes of time, carrier frequency, or carrier power (see Fig. 17). 
One variable is swept while the other two are held fixed. 

An Oscilloscope for the Microwave Engineer. The tools of 
the trade in microwave component design are primarily 
frequency-domain instruments such as spectrum and net 
work analyzers. Time-domain analysis is not nearly as preva 
lent at these frequencies as it is at the lower frequencies. 

Carrier 
Magni tude  

Carrier 
Frequency 

Fig. in A multidimensional perspective is sometimes useful in 
pulsed-RF device characterization. The microwave transition ana 
lyzer carrier the response of a device as a function of time, carrier 
frequency, or carrier power. One variable is swept while the other 
two are held fixed. 

The designers felt that by eliminating some of the road 
blocks in triggering and sensitivity, the microwave transition 
analyzer had the potential to bring a time-domain perspec 
tive back to microwave design. The user interface was de 
signed accordingly, with the microwave engineer in mind. 

One of the simplest and most obvious changes to a standard 
oscilloscope interface is that display ranges, trigger levels, 
and marker readouts are entered and annotated in dBm as 
well as volts. Also, unlike many oscilloscopes, the channel 
hardware is continuously autoranged and unaffected by the 
display scaling, which is just a mathematical operation on 
the acquired data. If desired, this autoranging feature can be 
disabled. Sensitive internal triggering over the bandwidth of 
the instrument, combined with new features such as holding 
a constant number of cycles on the display, filtering away 
noise instead of averaging, and reliably triggering on even 
very noisy signals with the phase trigger, all work to simplify 
the measurement process. 

IBASIC Implementation 
Despite considerable attention paid to the interface design, 
some users may still find the controls somewhat intimidat 
ing, especially those who work in applications outside the 
targeted areas. The goals of measurement flexibility and ease 
of use generally conflict at the design of the user interface. 
To address this concern, the microwave transition analyzer 
allows the user to generate custom, application-specific in 
terfaces through the internal execution of HP Instrument 
BASIC programs. IBASIC eliminates the need for an external 
controller by bringing the computer inside the analyzer. Pro 
grams can be generated and edited by attaching a standard 
HP-HIL keyboard to the front of the mainframe. Also incor 
porated into the HP 70004A mainframe is a memory card 
interface that can be used as a disk drive for the system. 
External disk drives are also supported over the HP-IB inter 
face. Specialized trace processing, custom interfaces, multi- 
step procedures, programmable control of other instru 
ments â€” in short, completely customized measurements â€” 
are possible using the microwave transition analyzer running 
an IBASIC program like the one shown in Fig. 18. 

USER | 

18 PiSSIGN PMta TO 811 
28 RSSIGN PFass TO 819 
38 ON KEY 1 LRBEt "RF on" 

H8 ON KEY 2 LRBEL "RF off 
58 ON KEY 4 LflBEL "RERD 
68 ON KEY 6 LRBEL "CHIRP 
78 ON KEY 7 LflBEL "PHflSE 

GOSUB Rf on 
GOSUB Rf off 

FRSS" GOSUB Rd.fass 

deviatn" GOSUB Fni_dev 
deviatn" GOSUB PÂ« dev 

38 IdleiURIT .85 

I GOTO Idle 

118 ! 
158 Rf_on: ! 

138 OUTPUT ?Mta;"sour:pox:stat on" 
1HB RETURN 

158 Rf off:! 

168 OUTPUT eMta;"sour:pOH:stat off" 
17B RETURN 
180 FÂ«_dev: ! 

RF on 

RF off 

REflD 

FflSS 

CHIRP 

deviatn 

PHflSE 

deviatn 

Fig. 18. IBASIC programs allow generation of custom user 
interfaces. 
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Frequency Translation as Convolution 

An Â¡deal mixer multiplies the two signals at its RF and LO ports to produce the 
signal at the IF port, as shown in Fig. 1 . 

The frequency-domain representation of the RF and LO signals is shown in Fig. 2. 

The convolution of the two frequency functions h(f] and k(f) is the value of the 
integral: 

g|f) = NX) k(f - x) dx. 

The function k(x) is first frequency-reversed, that is, folded about the dc axis giving 
k(-x). to at each evaluation frequency f, k(-x) is shifted by f with respect to 
h(x). output area under the product of the two functions is the convolution output at 
this frequency. Fig. 3 diagrams the procedure for the output frequency f = fy ~ '1 â€¢ 
The product is a single delta function, the area of which is ai32/4. This is the 
convolution result at the frequency f = \i - f  . 

It is values to verify that the output will be nonzero only at four values of f: fÂ¡ + \i, i-\ 
-\i, -fi \\i, and -f] -\2- At each of these frequencies, the output is 3] 32/4. This 
result is shown in Fig. 4. This frequency-domain representation is equivalent to 
the sum The two cosine waves, one at frequency \i - \\ and the other at \i + fÂ¡ . The 
amplitudes are 3)32/2. Using trigonometric identities, it's easy to verify that this 
result is equivalent to aia2cos(f]t)cos(f2t). 
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(b) 

g(f) 

3 ) 3 2 / 4  

o  f 2 - f .  
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Mixer 
Output 
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Summary 
In addition to bringing the time domain to microwave de 
sign, the microwave transition analyzer measures harmonic 
distortion using the FFT and provides familar vector network 
analyzer capability when configured with a synthesized signal 
generator. In this respect, the microwave transition analyzer 
is a general-purpose, multidomain tool that can be used to 
link new time-domain measurements with traditional fre 
quency-domain techniques, particularly in the areas of 
pulsed-RF and nonlinear device characterization. In a single 
instrument, the microwave transition analyzer integrates a 
versatile hardware architecture with very flexible means of 
control. The combination results in an instrument with 
unprecedented measurement diversity. 
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Design Considerations in the 
Microwave Transition Analyzer 
Digital signal processing is used extensively to improve the performance 
of the microwave sampler, the sample-rate synthesizer, and the 
high-speed analog-to-digital converter, and to extract and display input 
signal characteristics in both the time domain and the frequency domain. 

by Michael Dethlefsen and John A. Wendler 

The HP 71500A microwave transition analyzer is an MMS 
(Modular Measurement System) instrument. As shown in 
the idealized block diagram, Fig. 1, it consists of the 
HP 70820A microwave transition analyzer module and the 
HP 70004A MMS mainframe and color display. For an 
explanation of the capabilities and applications of the 
microwave transition analyzer, see the article on page 48. 

The block diagram is relatively straightforward. The two 
input signals are sampled by microwave sample-and-hold 
circuits with an input bandwidth of 40 GHz. The sample rate 
is generated by a low-frequency lO-to-20-MHz synthesizer 
under processor control. The sampled signals are digitized 
by an analog-to-digital converter (ADC), the digitized outputs 
are processed by the digital signal processor, and the final 
results are displayed on the MMS display by the instrument 
processor. 

The implementation was somewhat more complex than it 
might appear from the block diagram. While microwave 
samplers with bandwidths up to 40 GHz were generally 
available, they were not designed to be used as sample-and- 
hold circuits operating at rates up to 20 MHz. Low-frequency 
synthesizers, while also commonly available, did not have 

the desired phase noise performance. The available high 
speed ADCs, if used directly on the sampler output, would 
have been the primary noise floor and dynamic range limita 
tion of the instrument because of their limited resolution. 
Digital signal processing is relied upon heavily to achieve 
and improve much of the basic hardware performance and 
to extract and display the input signals' characteristics in 
both the time and frequency domains. However, the general- 
purpose digital signal processors could not do a significant 
amount of real-time processing at the 20-MHz data rates, so 
a large buffer memory was required between the ADC and 
the digital signal processor. 

This article attempts to explain some of the design consider 
ations, in both the hardware and the firmware, that went 
into the development of the microwave transition analyzer 
block diagram. 

Sampler Operation 
Microwave samplers have been used in RF and microwave 
instrumentation for several decades. 1 They traditionally 
have been the most economical way to obtain the broadest 
frequency coverage with the smoothest frequency response. 
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Fig. 1. Idealized block diagram of the 
HI' 71500A microwave transition 
analyzer. 
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Fig. 2. Simplified diagram of the 
microwave sampler circuit. 

Their noise figure is relatively poor. Their inherent broad 
band coverage has encouraged their use in frequency acquisi 
tion and phase-lock loops as well. However, their ability to 
capture the time-domain waveform (or the frequency-domain 
equivalent â€” simultaneously translating all the harmonics of 
a repetitive waveform) is what made them so suitable for 
the 70820A. 

The basic concept of a microwave sampler is to generate a 
very narrow sampling pulse that turns on a series switch 
between the RF input signal and the IF circuitry, which is 
mainly a holding capacitor. The amount of time that the 
switch is on establishes the frequency response of the sam 
pler. If the switch is fully on for 10 ps, the ideal frequency 
response would be sinc(10~uf), which has a 3-dB bandwidth 
of 44 GHz. Although this assumption of a perfectly rectangu 
lar switch on-resistance as a function of time is only an ideal, 
it is a good enough engineering approximation to use here. 
As shown in Fig. 2, the series switch used in this sampler is 
an integrated pair of GaAs diodes. The switching waveform 
is generated by driving a silicon step recovery diode at a 
variable sample rate between 10 and 20 MHz. The step out 
put of the step recovery diode is split into two signals, one 
for each channel. The sampler assembly then shapes and 
differentiates this edge to form a narrow impulse, which 
briefly turns on the diode switch, allowing some of the RF 
current to flow into the holding capacitor. 

For ideal sample-and-hold circuit operation, the output volt 
age should only depend on the input voltage during a single 
sampling instant. Its voltage should not depend on any pre 
vious samples or how often the samples are taken. There are 
two general techniques to achieve this sample-to-sample 
independence. One is to discharge the holding capacitor 
fully before each sample and measure the amount of charge 
or voltage on the hold capacitor after each sample. The 
other technique is to require that the sample-and-hold circuit 

capacitor charge to 100 percent of the input voltage during 
each sample period. The limitations of using the microwave 
sampler as a high-speed, conventional sample-and-hold cir 
cuit now begin to become apparent. At the fast 20-MHz sam 
ple rates required, it is not possible to discharge the hold 
capacitor accurately before each sample. On the other hand, 
to attain the required microwave input bandwidth, the sam 
pling pulse must be so narrow that it is not possible to 
charge the hold capacitor fully. 

A simplified model of a sample-and-hold circuit and the 
equations describing its frequency-domain transfer function 
are shown in Fig. 3. The fraction of the input signal that is 
stored on the hold capacitor is referred to as the sampler 
efficiency e, and for this model it can be computed as: 

e=l- e~ton/RC. 

vin(s) Vou,(s,S) 

= jra 
Original Frequency (o>=2jif)  

Down-Converted Frequency 
(<os=2jifs=2n/tsl 

GIF(S.S) 

G(s,S|  = 

GRF(S) 

( 1  -  ( 1  - e ) e - s t < > Â » )  V o u , ( s , S ) =  ( 1 -  B e  - s ' s )    

V i n ( s )  t s ( S  +  Â ¡ r U  ( 1  -  B ( 1  - e  ) e - s M  d  +  s R C )  
K pi. 

B  =  e " t s / R P c  f =  1  -  e  t o n / R ( Â ·  
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Fig. 3. Sampler model. 
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Fig. of Sampler time-domain response for different values of 
sampler efficiency e and hold efficiency B. 

100% efficiency, e = 1, would require that the sampler on- 
time be several RC time constants long, but this would mean 
an excessively small input bandwidth, as shown by the GRF 
portion of the sample-and-hold circuit frequency response 
equation in Fig. 3. Most microwave samplers have relatively 
low voltage transfer efficiencies, usually significantly less 
than 10%. With this low sampling efficiency, the resultant 
voltage on the hold capacitor is a weighted combination of 
the input voltage from many samples. Sample-to-sample 
independence is not achieved. 

An ideal sample-and-hold circuit also holds its sampled volt 
age indefinitely until either a reset or the next sample occurs. 
The voltage droop from one sample to the next is character 
ized by the hold efficiency B, which can be computed as: 

where ts is the sampling period and Rp is the sample-and- 
hold circuit's load resistance as defined in Fig. 3. 100% hold 
efficiency means no droop and an infinite load impedance. 
Fig. 4 shows the time-domain results of sampling a pulse 
waveform with a sample-and-hold circuit that has ideal char 
acteristics, with reduced sampler efficiency, and with re 
duced hold efficiency. Fig. 5 plots the GIF portion of the 
sample-and-hold circuit's frequency response equation for 
sampler efficiencies of 100%, 10%, and 1%, and for hold effi 
ciencies of 90% and 100%. For low sampler efficiencies like 
those normally encountered in microwave samplers, the 
plots in Fig. 5 look very much like a single-pole, low-pass 
filter. The equations for GIF do indeed simplify and con 
verge, in this case, to a single-pole filter. The efficiency 
equations become: 

e = ton/RC 

B = 1 - ts/R,,C. 

The original model then becomes the very commonly used 
model shown in Fig. 6. The sampler is simply replaced by its 
time averaged impedance Rt.s/ton. 

This characterization of the sampler model points out the 
main difficulties of using a microwave sampler as a sample- 
and-hold circuit. The IF output voltage is low-pass filtered 
and represents an average of many samples of the input 
voltage. In addition, if the hold efficiency is not very close to 
1, even the low-frequency gain will vary with the sampling 

frequency and the sampler efficiency as shown in Fig. 5. To 
solve this latter problem, the HP 70820A microwave transi 
tion analyzer module uses a very high-impedance buffer on 
the output of the sampler and provides a positive feedback 
bootstrap voltage to remove the low-frequency loading 
effects of the current biasing resistors as shown in Fig. 2. 
Operating with this high load impedance has the additional 
benefit of minimizing the sampler compression at high input 
levels since very little signal current has to flow through the 
sampler diodes. In addition, since the sampler diodes are 
effectively current biased instead of voltage biased, their 
sensitivity to temperature variations is considerably reduced. 

The problems created by the sampler low-pass filter effect 
are more difficult to solve. As the sampling frequency is var 
ied, the current bias is changed by the processor to keep the 
sampler on-time ton constant. This is required so that the RF 
frequency response does not vary noticeably with sampling 
frequency. However, since the sampler time constant is pro 
portional to ton/ts, the IF bandwidth now varies with sam 
pling frequency. To solve this problem a programmable zero 
was added following the IF buffer amplifier (see Fig. 7). 
During the IF calibration process, the sample-and-hold cir 
cuit low-pass pole is measured as a function of the sampling 
frequency. Whenever the sampling frequency is changed, the 
programmable-zero amplifier is adjusted to cancel the effect 
of the sampler pole. 

Another challenge encountered when using a microwave 
sampler as a sample-and-hold circuit is its feedthrough capac 
itance. A capacitance as low as 50 femtofarads between the 
RF input and IF output will cause significant errors in the 
expected operation of the microwave sampler. Signals be 
low 10 MHz will directly couple into the IF even when the 
sampler is supposed to be off. To cancel this effect, the input 
signal is tapped off before the sampler diodes, inverted, and 
capacitively summed back into the IF signal. 

The IF output of the sampler is ac coupled. When the instru 
ment is dc coupled, the dc component is restored by picking 
it off before the sampler diodes and summing it back in at 
the IF buffer stage. The crossover frequency is about 3 Hz. 
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Fig. of Sampler IF frequency response for different values of 
sampler efficiency e and hold efficiency B. 
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Fig. 6. Simplified sampler model. 

IF and ADC Operation 
Now that the signal has been sampled and the sampler pole 
effect has been canceled, the IF signal can be processed and 
digitized. The IF processing block diagram is shown in Fig. 7. 
The ADC used in the HP 70820A is a 10-bit device, operating 
at the same frequency as the input sampler. This 10-bit reso 
lution does not provide enough dynamic range for many of 
the measurements performed by the microwave transition 
analyzer. For example, network analysis measurements can 
be performed over a greater-than-100-dB range and time- 
domain waveforms of 1 mV full scale can be captured with 
out requiring trace-to-trace averaging. To achieve this dy 
namic range improvement, step gains are placed in the IF 
signal path. Up to 60 dB of gain in 6-dB steps can be switched 
in, either autoranged or manually controlled by the user. 
This means that even low-level signals can use the full range 
and accuracy of the ADC. To allow gain to be used even in 
the presence of a large dc signal, a dc offset DAC is added 
ahead of the step gains as shown in Fig. 7. This allows up to 
Â±420 mV of offset to be applied to the IF signal before the 
step gains. The dc offset capability does not affect the al 
lowed input signal range. It must be kept less than 420 mV 
peak to avoid sampler compression. 

The total noise present in the IF may mask the input signal 
and limit the amount of step gain that can be used without 
overranging the ADC. This noise is there because the sam 
pler translates the entire 40-GHz bandwidth into the IF fre 
quency range. The programmable-zero amplifier also adds a 
lot of high-frequency amplification to the sampler and the IF 
buffer noise floor. All of this noise needs to be minimized. It 
is also highly desirable to remove any harmonics of the sam 
pling LO signal and signals centered around them. To solve 
these problems, switchable low-pass IF filters are used. 
These include a 10-MHz filter for sampling rates between 14 

and 20 MHz and a 7-MHz filter for sampling rates less than 
14 MHz. In addition, a 100-kHz analog noise filter can be 
switched in to provide a greater-than-20-dB reduction in 
total it Since this noise filtering is done in real time, it 
provides faster signal-to-noise ratio improvement than the 
digital signal processor-based alternatives. 

As described in the article on page 48, the IF signal is a time- 
scaled version of the original RF signal when the instrument 
is operating in the standard, repetitive sampling mode. 
Therefore, triggering information can be obtained from the 
IF signal. Since the signal is at a much lower frequency and 
is potentially amplified and filtered, the trigger circuitry is 
cheaper to implement and more accurate than a trigger cir 
cuit operating directly on the microwave signals. This allows 
the microwave transition analyzer to trigger internally on 
very low-level periodic signals anywhere in its microwave 
frequency range. 

Once it IF signal has been filtered, offset, and amplified, it 
is ready to be digitized. The ADC is a commercially avail 
able, two-pass, 10-bit ADC and the required external sample- 
and-hold circuit is implemented with a discrete design. The 
sample-and-hold circuit and ADC are driven at the same 
frequency as the microwave input sampler. The digitized 
signal is stored into the 256K-sample ADC memory buffer 
for further digital signal processing. 

IF Corrections 
Fig. 8 shows a representation of the spectrum of the analog 
IF signal for a sample rate of fs = l/ts. The ideal sampling 
operation creates a spectrum that is replicated every fs so 
the spectral component at Ã2 = fs - fi is the complex conju 
gate of the ideal spectral component at fj. The IF proces 
sing, including the hold operation of the microwave input 
sampler and the low-pass filters, provides a different 
amount of attenuation and phase shift at the IF frequency Ã2 
than at frequency fj. This is signified by the G(f) transfer 
function in Fig. 8. When the ADC sample-and-hold circuit 
resamples the IF signal, the spectral component at f-2 will be 
aliased or folded onto the same frequency as fi. It is not pos 
sible to build a perfect anti-aliasing filter that will totally 
eliminate f-z, even at a fixed sample frequency of 20 MHz, 
and in this application, where the sample rate is continuously 
variable between 10 and 20 MHz, there will be significant 
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Fig. 7. Microwave transition analyzer IF block diagram. 
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aliasing. However, since the filtered IF signal was originally 
a sampled signal, the relationship between the original 
aliased spectrum and the unaliased spectrum is known: 

V2 = Y!*. 

Therefore, the original spectrum can be computed if the 
folded IF response (G(fj) + G*(fs - fi)) can be determined. 
The folded frequency response varies with fs, and fs can be 
any value between 10 and 20 MHz. Therefore, the IF cannot 
realistically be calibrated just by measuring the folded IF 
response, since there are an almost unlimited number of 
different responses possible. Instead, the unfolded frequen 
cy response G(f) must be determined and then the folded 
response can be computed based on the present value of fs. 
Determining the folded IF response is the major requirement 
for the digital signal processor-based IF corrections in the 
microwave transition analyzer. 

Many things contribute to the overall IF frequency response. 
In addition to the flatness of the IF buffer amplifier, the 
programmable-zero amplifier, and any nonideal cancellation 
of the sampler pole, all possible combinations of analog fil 
ters and step gains must be characterized. For example, the 
relatively high-order filters may have an amplitude response 
flatness of Â±2 dB and some very significant group delay vari 
ation which creates considerable ringing in their step re 
sponse. To measure these, the microwave transition analyz 
er generates a calibration signal. The calibration signal is a 
precisely known square wave that is connected by the user 
to the input port. The frequency and amplitude of the cal 
ibration signal are adjusted and varied as required during 
the IF calibration process. This calibration signal is only 
used for IF calibration and verification. The rise and fall 
time requirements on the calibration signal are governed by 
the requirement that it settle in less than 50 ns, so it is not 
useful for verifying or calibrating the RF frequency response 
of the input. 

The IF frequency response must be measured in an alias- 
free fashion and at frequencies higher than 10 MHz. This 
cannot be done with just a 20-MHz maximum sample rate. 
The exclusive-OR control shown in Fig. 7, which inverts and 

delays the ADC clock, helps solve this problem. By first 
measuring the calibration signal with a normal 20-MHz clock, 
and then remeasuring the same signal with the inverted 
clock, which delays the ADC sample by 25 ns. an effective 
40-MHz sample rate is achieved after the two measurements 
are interleaved. In this way. the frequency responses, both 
magnitude and phase, of the IF path, the step gains, and the 
switched filters are all determined. In some cases the mea 
sured data is used directly in the correction process. In other 
cases, such as for the step gams, better results are achieved 
by fitting the measured data to a model and then computing 
the extrapolated frequency response from the model. 

The other critical parameter that must be included in the IF 
frequency response is the delay between the microwave 
input sampler and the ADC sample-and-hold circuit. This 
must include both the IF signal delay and the delay in the LO 
clock paths. Since this delay is not constant with sample 
frequency, it must be characterized as a function of the sam 
ple frequency. A significant portion of the IF calibration time 
is spent doing this characterization. This involves measuring 
the group delay of the harmonics of the calibration signal at 
different sample frequencies. 

Once the unfolded frequency response and the delay have 
been measured, the folded frequency response can be com 
puted for a given sample frequency. However, since the VÂ¡ 
and V-2 spectral components can have very similar ampli 
tudes, it may turn out that the folded frequency response has 
a very deep null in it, depending on the phase relationships. 
An excessively deep null cannot be properly corrected, for 
both noise and stability reasons. When this occurs, the firm 
ware in the microwave transition analyzer must change the 
delay relationship between the IF signal and the ADC clock. 
This can be done with either the ADC clock invert/delay 
control or by using a different 20-MHz analog filter in the 
signal path. The firmware determines which of the possible 
combinations results in the best possible folded frequency 
response. 

Once the IF calibration process has been completed, the 
data is stored in battery backed-up RAM. Whenever the sam 
ple frequency or IF gain is changed, the microwave transi 
tion analyzer firmware recomputes the folded frequency 
response of the IF. This folded response is then inverted and 
applied to the digitized input data using either an FFT (fast 
Fourier transform) operation or a 64-point FIR (finite impulse 
response) digital filtering operation, depending on the mea 
surement mode. The result is that the IF looks as if it has a 
flat response all the way to the Nyquist frequency (fs/2). 
Therefore, the microwave sampler appears to have the ideal 
impulse and step response expected of a true sample-and- 
hold circuit. 

Sample Rate Synthesizer 
The requirements on the sample-rate synthesizer in the 
microwave transition analyzer are quite stringent. Not only 
must it have a frequency resolution less than 0.001 Hz over a 
lO-to-20-MHz frequency range, but it must also be able to 
phase-lock to a common 10-MHz reference and be capable 
of shifting the phase of the synthesized output with less than 
0.001-degree resolution. Fortunately, this type of source, 
using fractional-N synthesis techniques,2 had been used in 
earlier HP instruments and could be efficiently leveraged. 
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The most stringent requirement for the source was its jitter, 
or equivalent phase noise, but the available implementations 
had inadequate performance. Both the close-in and the 
broadband phase noise of the synthesizer are important. For 
example, just based on the maximum slope of a full-scale 
40-GHz sine wave, jitter of 7 femtoseconds on the sampler 
LO signal generates additional noise greater than one least- 
significant bit of the ADC. Since the fundamental of the RF 
waveforms can be mixed to as low as 100 Hz in the IF, mini 
mizing the close-in noise and spurious components of the 
sample-rate synthesizer is critical to avoiding low-frequency 
perturbations and distortion of the digitized signal. 

To improve the basic performance of the available 
fractional-N synthesizers while still leveraging much of the 
previous engineering effort and available integrated circuits, 
a translate loop was added to the normal synthesizer block 
diagram. As seen in Fig. 9, instead of having the loop oscilla 
tor operate directly over the normal 30-to-50-MHz band, a 
420-to-440-MHz oscillator is mixed with a 390-MHz reference 
oscillator. The mixer output, 30 to 50 MHz, is the input to the 
leveraged fractional-N assembly, which does the fractional 
division, phase detection, and interpolated phase correction, 
and generates the tuning voltage to lock the 440-MHz oscilla 
tor. A second output of the 440-MHz oscillator is fed to a 
programmable integer divider to generate the lO-to-20-MHz 
output. 

There was no requirement for this synthesizer to sweep con 
tinuously over the 10-to-20-MHz range. This translate-and- 
divide-down block diagram allows the performance of the 
overall synthesizer to be improved from the original design 
by a factor equal to the integer divide number, or more than 
26 dB. To improve the broadband phase noise further, a 
200-kHz-wide bandpass filter is switched in just before the 
step recovery diode driver whenever the synthesizer is with 
in the 19.8-t o-20-MHz frequency range. In the majority of the 
measurement modes, the synthesizer is set very close to 20 
MHz, so this bandpass filter is normally used. While it was 
not possible to achieve the 7-fs performance number, this 

Fig. 9. Block diagram of the 
10-to-20-MHz sample rate synthe 
sizer. API stands for analog phase 
interpolation. 

combination of improvements reduces the jitter contribution 
of the synthesizer to less than 1 ps. 

RF Filtering 
Because the microwave transition analyzer digitizes wave 
forms with a continuous and extremely precise time axis, it 
becomes feasible to apply digital filtering functions to these 
waveforms. These filters can be used to simulate the adding 
of a hardware filter to the system, to improve the signal-to- 
noise performance, to remove undesired harmonics and 
spurious frequency components, and to compensate for non- 
ideal microwave frequency response effects in the RF cir 
cuitry, cabling, probes, and test fixtures, which inevitably 
degrade the system bandwidth. This ability to correct for RF 
frequency response roll-off is also used within the instru 
ment to flatten the frequency response of both the samplers 
and the internal RF cabling to 40 GHz. 

Two filters can be defined by the user, one for each of the 
two input channels. These filters are specified by defining 
the magnitude and phase response at up to 128 arbitrarily 
spaced frequency points. The type of interpolation to be 
used between these frequencies can be specified as flat, 
linear, or logarithmic. These user-defined filters are com 
bined with the instrument's own RF correction data to gen 
erate the composite filter function that is applied to the digi 
tized signal. Regardless of whether the sampler is being 
used for frequency translation or frequency compression or 
a combination of the two, there is a unique mapping be 
tween the input RF frequency and the IF frequency. This 
means that the desired RF filtering can indeed be performed 
by scaling and translating the filters' frequency axis, based 
on the current time span and carrier frequency, into the IF 
band and performing the filtering on the digitized IF signal. 

There are some modes of sampler operation in which the RF 
waveform is not replicated in the IF, so there is no unique 
RF-to-IF frequency mapping and RF filtering cannot be per 
formed. An example of this mode of operation would be 
when triggering on the clock frequency while sampling a 
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Fig. 10. Aii example of a measurement with user filter corrections. 
The frequency response of a cable fixture was measured (bottom 
trace), stored, and used to correct a measurement of an 800-ps 
pulse that was made using the fixture. The corrected trace mea 
sured with the fixture is almost identical to the ideal trace mea 
sured without the fixture. Because the ideal and corrected traces 
are almost identical, they are indistinguishable in this figure. 

random data sequence to create an eye diagram. User filter 
ing, including the internal RF corrections to 40 GHz, is not 
valid in this mode so the feature must be turned off. If, how 
ever, the data sequence is actually a pseudorandom data 
sequence and the sample rate of the microwave transition 
analyzer is adjusted to correspond to the pattern repetition 
rate instead of the clock rate, then the RF waveform is repli 
cated in the IF, and RF filtering and corrections can be per 
formed, even while triggering on the clock to make eye 
diagram measurements. 

The user filter and correction data can be generated in sev 
eral ways. Direct entry of values is one alternative that is 
useful for simple, rectangular filters. The frequency-domain 
data for the RF filter can also be generated from any of the 
four traces. This means that mathematical filters can be de 
fined using the built-in trace math and stored to the RF filter. 
More important, it means that measurements can be used to 
create the RF filter or correction data. For example, the 
microwave transition analyzer, in conjunction with an ap 
propriate source, can be used to measure a transfer function 
of a microwave test fixture. This transfer function can be 
stored to the user correction table, and the inverse of this 
transfer function can then be used as the RF filter to be ap 
plied to the time-domain data. This filtering (deconvolution) 
removes the frequency response effect of the test fixture 
from the time-domain waveform of interest. The transfer 
function measurement can be done in frequency sweep 
mode with a CW source stepped over the frequency range of 
interest like a conventional network analyzer, or the transfer 
function can be measured with a wide-bandwidth step or 
impulse source. 

An example of applying the user correction filter is shown in 
Fig. a First the frequency response transfer function of a 
cable fixture was determined by measuring a 400-ps pulse 
both before and after it went through the cable fixture. The 
FFT of these two pulse trains was computed to determine 
their frequency spectrums. The ratio of these two spectrums 

was taken and stored to the user correction filter as the 
cable fixture's frequency response. This is shown on the 
bottom trace in Fig. 10 out to a frequency of 8 GHz. A test 
pulse of of 800 ps was then used. The upper raw trace shows 
the pulse distortion caused by the cable fixture. After user 
corrections were turned on. the corrected trace was gener 
ated, which lies almost directly on the ideal trace. The ideal 
trace was established by measuring the pulse directly out of 
the pulse generator before it was connected to the cable 
fixture. The time-domain traces are showing a half cycle of a 
200-MHz pulse tram. 

There are some limitations on the ability of the microwave 
transition analyzer to apply RF filtering and correction to 
time-domain waveforms. First, the IF waveform must be a 
valid representation of the RF waveform. If there are non- 
harmonically related, spurious, or random signals present, 
they will be mixed into the IF but will not appear at the cor 
rect frequencies, so incorrect filter values will be applied to 
them. Second, the signal must be sampled with fine enough 
equivalent time resolution to avoid aliasing any significant 
harmonics or sidebands. This is just the Nyquist criterion, 
which says that a signal must be sampled at a rate greater 
than twice its single-sided bandwidth. This applies to both 
real-time, single-shot sampling and repetitive, equivalent 
time sampling. Any aliased components will appear at the 
incorrect frequencies and be improperly filtered. 

Third, because limited time records are captured and pro 
cessed with the FFT, totally arbitrary filter shapes cannot, in 
general, be precisely accommodated. For example, a filter 
shape with a 2-^is transient response would require that 2 [is 
of an arbitrary input be digitized to generate even the first 
output point. A desired time resolution of 1 ps would require 
two million data samples and a digital filter with effectively 
two million coefficient taps. There are two methods avail 
able to minimize this limitation. If an integer number of 
cycles of the input are used in the FFT processing, then arbi 
trary filter shapes can be precisely handled. The circular 
convolution performed by the FFT is, in this case, exactly 
equivalent to the desired linear convolution. To make this 
more practical to the user, a cycles mode is available in 
which the time span can be set in terms of cycles of the fun 
damental instead of seconds per division. This automatically 
tracks the fundamental frequency as it is changed. The micro 
wave transition analyzer oversweeps the time-domain span 
up to the next largest power-of-two trace size. For example, 
if a 0.5-cycle time span is specified with a trace point size of 
512, then one full cycle of the waveform is digitized and a 
1024-point FFT is used. 

The second method of minimizing the effect of limited time 
records is to make sure that the filter's transient response is 
shorter than the minimum displayed time span to be used. If 
the waveform used in the FFT does not contain an integer 
number of signal periods, there will potentially be edge ef 
fects because of the combination of the discontinuity at the 
edges of the time record and the filter's transient response. 
Since the instrument oversweeps up to a factor of two, the 
edge effects will not be part of the displayed waveform as 
long as the filter has a transient response shorter than the 
displayed time span. 
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A fourth limitation on the ability of the microwave transition 
analyzer to apply RF filtering and correction is that decon- 
volution cannot be performed over a wide dynamic range. 
For example, if the test fixture has an upper frequency roll- 
off or a narrowband notch of 50 dB, correcting for this would 
require that the microwave transition analyzer effectively 
apply 50 dB of gain at these frequencies. This much gain on 
the noise components creates an excessively noisy and un 
stable waveform trace. In general, 20 to 30 dB is about the 
largest amount of frequency dependent amplification that 
can be used while maintaining an acceptable waveform with 
a reasonable amount of averaging and reasonable stability in 
the test fixture. When creating the transfer function to be 
used in the deconvolution, the attenuation should be rolled 
off once the transfer function has dropped below the accept 
able limit. This also effectively low-pass filters the signal at 
frequencies above which deconvolution can no longer be 
done. This is seen in the last division of the user correction 
trace shown in Fig. 10, where the frequency response is be 
ing tapered from -35 dB to +20 dB at 10 GHz. Keeping the 
value of -35 dB to the default 100-GHz maximum frequency 
would have resulted in excessive noise because of the +35 
dB of broadband gain that this would have created. 

Analytic Signal 
Many of the primary applications for the microwave transi 
tion dis result from its built-in capability to easily dis 
play the instantaneous magnitude and phase envelope of the 
input signal. This capability is implemented by creating the 
quadrature function using the Hubert transform. This quad 
rature function is combined with the original data to form a 
complex-valued representation of the waveform called the 
analytic signal. Just as complex-valued phasor representa 
tions simplify the analysis of linear circuits, the analytic sig 
nal simplifies the manipulation and analysis of modulated 
waveforms. 

Assume a signal can be mathematically expressed as 

x(t) = a(t)cos(coct 

and a(t) and cj>(t) can be simply calculated from the 
magnitude and phase of the analytic signal xa(t): 

a(t) = l(t)-) 

where coc is the carrier frequency and a(t) and <J)(t) are the 
amplitude and phase modulation functions. 

Now create the complex function, 

xa(t) = x(t) - jxhi(t), 

where xj,i(t) is the Hubert transform of x(t). The Hubert 
transform is defined as a convolution of the the signal with 
-1/itt. The frequency-domain relationship is simply: 

Xhi(fj = jX(f)sign(f), 

where sign(f) = -1 for f < 0, 0 for f = 0, and 1 for f > 0. Thus, 

Xa(f) = X(f)(l + sign(f)) 
= 2X(f)forf > 0 
= X(f)forf  = 0 
= Oforf < 0. 

This is simply the positive spectrum of x(t). 

If the modulation bandwidth is less than the carrier frequency 
(i.e., the modulation spectrum doesn't wrap around dc), then 

xa(t) = a(t)eu"*t+<K'Â» 

and 

<Kt) = - tan-'(xhi(t)/x(t)) - (wct). 

Another way to view the Hubert transform is as a phase 
shifter that shifts the phase of each input frequency compo 
nent by 90 degrees, leaving the magnitude unaffected. The 
resulting signal is said to be in phase quadrature with the 
original. This is sometimes done with analog phase shifters 
in radar and receiver systems. Very accurate, wideband re 
sults become much easier to achieve, however, with digital 
signal processing, using either the FFT as shown above, or 
time-domain FIR filters. 

The analytic signal representation is particularly useful in 
the measurement of pulsed RF signals. In these applications 
it is often the characteristics of the magnitude or phase as a 
function of time that are of interest. These features of the 
signal can be obtained by simply converting the analytic 
representation to polar format and displaying the desired 
quantity. Traces of phase as a function of time can be numer 
ically differentiated to display frequency as a function of time. 
A linear slope corresponding to the carrier frequency can be 
mathematically removed leaving a display of the carrier's 
phase modulation as a function of time. As described here, 
these are single-channel measurements where the carrier 
phase is measured relative to the fixed-frequency sampling 
pulse. Measuring the phase with respect to a CW reference 
is also possible, using both input channels. 

Two-channel operation suggests another valuable use of the 
analytic representation: vector normalization of traces. 
Many times it is desired to measure the magnitude and 
phase response of a particular device under a time-varying 
stimulus, such as pulsed RF. In this case, a two-channel mea 
surement is needed in which the time response at the output 
of the device is divided (in vector fashion) by the response 
at the input. Also, to support the measurements typically 
found in conventional network analyzer systems, a complex 
(vector) representation of trace data is mandatory. 

Since the Hubert transform is a filtering process, it has the 
same for  and const ra in ts  as  previous ly  d iscussed for  
RF filtering. In addition, it has the constraint that the signal 
must correspond to the basic model of a single carrier fre 
quency with modulation sidebands. For example, baseband 
signals with a fundamental and many harmonics do not 
meet this criterion, and the analytic operator has little, if 
any, useful meaning. The user can disable the analytic opera 
tor in this mode to achieve some increased performance 
speed. The Hubert transform performs best if the carrier is 
located in the center of the IF bandwidth. This provides the 
maximum amount of double-sided modulation bandwidth, 
and keeps the carrier the maximum distance from dc or the 
Nyquist frequency where inaccuracies in the Hubert trans 
form are the greatest. The internal implementation of the 
Hubert transform generally uses the positive-side FFT tech 
nique, with some additional enhancements using windowing 
and unwindowing operations to minimize the time record 
edge discontinuities. 
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Sampling at Slower Rates 
As mentioned earlier, the sampling rate synthesizer operates 
between 10 and 20 MHz. Normally, the sampling rate must 
be set very close to the input signal's fundamental frequency 
or pulse repetition frequency or a subharmonic thereof. This 
means that signal frequencies less than 10 MHz cannot be 
acquired in the normal manner. If the hardware sampling 
rate is set to a multiple of the desired rate, then simply keep 
ing one out of every N points would result in the desired 
sampling rate. Unfortunately, complications arise for trigger 
ing and providing IF correction. Because more than one 
sample is taken during each period of the input signal, the IF 
signal presented to the ADC is not an accurate replica of the 
input signal, with or without IF correction. For this reason, 
triggering on the IF signal is no longer adequate for proper 
operation. What is required is a digital triggering operation 
using only the samples corresponding to the final (decimated) 
sampling rate. To correct the IF response and ensure that 
the retained sample is an accurate measure of the input sig 
nal voltage, the influence of the samples leading up to the 
desired one needs to be removed. This can only be achieved 
by processing the original samples obtained at the hardware 
sampling rate and correcting the desired sample before 
discarding the remaining N-l samples. 

Many samples may have to be processed before a software 
trigger is detected. Consequently, the processing involved in 
applying IF corrections to the retained samples needs to be 
done in real time, that is, the correction process needs to 
operate in parallel with the data collection at a rate that is 
sustainable over an indefinite period. This is accomplished 
by designing the ADC memory to be a dual-ported circular 
buffer so that one segment of memory can be worked on 
while another is being written to by the ADC. As samples 
are collected at the lO-to-20-MHz rate in another part of 
memory, a finite impulse response (FIR) IF correction filter 
of up to 64 taps is applied to the block of samples just col 
lected and a single corrected output sample is produced. 
The digital signal processor is able to produce corrected 
samples at a maximum rate of about 10 kHz. This then 
becomes the maximum sampling rate in the new mode of 
operation. The minimum sampling rate is 1 Hz. 

Input signals with a fundamental repetition frequency less 
than 10 kHz are sampled once per cycle. The sample rate 

synthesizer is set somewhere between 10 and 20 MHz, N is 
determined, and 1 of N hardware samples are corrected and 
retained. The process is the same for input repetition fre 
quencies between 10 kHz and 10 MHz except that multiple 
input periods occur between each retained sample, keeping 
the output rate less than 10 kHz. 

Conclusion 
By combining and enhancing the basic analog and digital 
hardware blocks with the flexibility of digital signal process 
ing, the HP 70820A microwave transition analyzer team was 
able to implement a fundamentally simple microwave data 
acquisition instrument that is capable of making a wide vari 
ety of time-domain and frequency-domain measurements on 
microwave signals and components. Not only does this pro 
vide new versatility previously unavailable in a single instru 
ment on both CW and complex time-varying signals, but it 
also provides new functionality to the microwave designer â€” 
for example, in looking at extremely fast transitions on 
periodically pulsed signals. 
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A Visual Engineering Environment for 
Test Software Development 
Software development for computer-automated testing is dramatically 
eased by HP VEE, which allows a problem to be expressed on the 
computer using the conceptual model most common to the technical user: 
the block diagram. 

by Douglas C. Beethe and William L. Hunt 

For many years, the cost of developing computer-automated 
testing software has grown while the cost of the computer 
and instrumentation equipment required to run tests has 
dropped significantly. Today, in many test systems, the hard 
ware costs represent less than 25% of the total cost of the 
system and software costs consume the other 75%. HP VEE 
was designed to dramatically reduce test software develop 
ment costs by allowing the test to be expressed on the com 
puter using the conceptual model most common to the tech 
nical user: the block diagram. This article will provide a 
general overview of the development of HP VEE, its feature 
set, and how it applies the concept of the executable block 
diagram. Further details of the architecture of HP VEE can 
be found in the articles on pages 78 and 84. 

There was a time when business and finance people dreaded 
using a computer because it meant an extended question- 
and-answer session with a primitive mainframe application 
being displayed on a dumb terminal. Even after the first per 
sonal computers were introduced, very little changed, since 
the existing applications were simply rewritten to run on 
them. When the electronic spreadsheet was developed, busi 
ness users could finally interact with the computer on their 
own terms, expressing problems in the ledger language they 
understood. 

Un titled 

The technical community was left out of this story, not be 
cause the personal computer was incapable of meeting 
many of their needs, but because their problems could sel 
dom be expressed well in the rows and columns of a ledger. 
Their only options, therefore, were to continue to work with 
the question-and-answer style applications of the past, or to 
write special-purpose programs in a traditional programming 
language such as Pascal, C, or BASIC. 

Technical people often find it difficult to discuss technical 
issues without drawing block diagrams on white boards, 
notebooks, lunch napkins, or anything else at hand. This 
begins at the university where they are taught to model vari 
ous phenomena by expressing the basic problem in the form 
of a block diagram. These block diagrams usually consist of 
objects or processes that interact with other objects or pro 
cesses in a predictable manner. Sometimes the nature of the 
interactions is well-known and many times these interactions 
must be determined experimentally, but in nearly all cases 
the common language of expression is the block diagram. 

Unfortunately, the task of translating the block diagram on 
the lunch napkin into some unintelligible computer language 
is so difficult that most technical people simply cannot ex 
tract real value from a computer. Staying up on the learning 

H u n  S t o p  C e n t  S t e p  |  

Fig. 1. A simple HI' \KE program 
to draw a circle. 
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curve of their own problem domain is a sufficient challenge 
that embracing a whole new learning curve (programming) 
just to translate problems for the computer's benefit hardly 
seems worth the effort. While it is true that many wonderful 
solutions to certain kinds of problems have been generated 
over the years, most of the potential usefulness of comput 
ers has never been realized. In many cases, a good calcula 
tor is still the best bet because it makes a manual solution 
relatively easy to compute. 

What is HP VEE? 
HP VEE, Hewlett-Packard's visual engineering environment, 
is a software tool that allows users to create solutions by 
Unking visual objects (icons) into block diagrams, rather 
than by using traditional textual programming statements. 
HP VEE provides objects for data collection, analysis, and 
presentation, in addition to objects and features for data 
storage, flow, modularity, debugging, documenting, and 
creating graphical user interfaces. The objects work to 
gether in the form of an interconnected network or block 
diagram constructed by the user to represent the problem at 
hand. The user selects the necessary objects from the menu, 
links them in the manner that represents how data flows 
from one object to another, and then executes the resulting 
block diagram. No translation to some other language. No 
other intermediate step. 

To understand HP VEE better, consider a simple graphical 
program to draw a circle. By connecting a loop box, two 

math boxes (sin and cos), and a graph, this simple program 
can be built in less than one minute (Fig. 1). Although this is 
not a difficult task using a traditional language that has sup 
port for graphics, it is still likely that it will be quicker to 
develop it using HP VEE. 

HP \"EE eases the complexity of data typing by pro\iding 
objects that can generate and interpret a variety of data 
types in a number of shapes. For example, the virtual func 
tion generator object generates a waveform data type, which 
is just an array of real numbers plus the time-base informa 
tion. It can be displayed on a graph simply by connecting its 
output to the graph object. If its output is connected to a 
special graph object called a MagSpec (magnitude spectrum) 
graph, an automatic FFT (fast Fourier transform) is per 
formed on the waveform (Fig. 2). By connecting a noise gen 
erator through an add box, random noise can be injected into 
this virtual signal (Fig. 3). If we had preferred to add a dc 
offset to this virtual signal, we could have used a constant 
box instead of the noise generator. 

User panels allow HP VEE programs to be built with ad 
vanced graphical user interfaces. They also allow the imple 
mentation details to be hidden from the end user. To com 
plete our waveform application, we can add the slider and 
the graph to the user panel (Fig. 4). We can adjust the pre 
sentation of this panel by stretching or moving the panel 
elements as required for our application. 

Unfilled :  R u n  Â ¡ S t o p .  C o n t  S t e p  

F i l e  E d i t  F l o w  D e v i c e  D a t a  M a t h  

Fig. 2. A waveform displayed in 
the time and frequency domains. 
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Hun 1  S top :  Con t  

F l o w  D e v i c e  M a t h  A d v M a t h  D i s p l a y  H e l p  

Ã­ Frequency 

Ã  ̄Amplitude 

|  Phase  I  Deg  

; Time Span 

Fig. 3. Noise added to a wave 
form in the time and frequency 
domains. 

This is just a trivial overview of the basic concept behind 
HP VEE. Other major features not covered include objects 
for sending data to and from files, data translation and con 
version, advanced math capabilities, and data display func 
tions. HP VEE actually consists of two products. HP VEE- 
Engine is for the analysis and presentation of data gathered 
from files or programs or generated mathematically. HP 
VEE-Test is a superset of HP VEE-Engine and adds objects 
and capabilities for device I/O and instrument control. 

Development Philosophy 
The team's goal for HP VEE was a new programming para 
digm targeted not only at the casual user, but also at the 
advanced user solving very complex problems. One simple 
approach would have been to assign an icon to each state 
ment in a traditional language and present it to the user in a 
graphical environment. The user would simply create icons 
(statements) and connect them in a structure similar to a 
flowchart. However, such a system would be harder to use 
than a traditional language, since the graphical program 
would require more display space than the older textual 
representation and would be more difficult to create, 
maintain, and modify. This would actually have been a step 
backward. 

We decided that a genuine breakthrough in productivity 
could only be achieved if we moved to a higher level of ab 
straction to more closely model the user's problem. We 
therefore chose to allow users to express their problems as 

executable block diagrams in which each block contains the 
functionality of many traditional program statements. Many 
elements in HP VEE provide functionality that would require 
entire routines or libraries if the equivalent functionality 
were implemented using a traditional language. When users 
can work with larger building blocks, they are freed from 
worrying about small programming details. 

Consider the task of writing data to a file. Most current pro 
gramming languages require separate statements for opening 
the file, writing the data, and closing the file. I( would have 
been relatively easy to create a file open object, a file write 
object, and a file close object in HP VEE. Such an approach 
would have required at least three objects and (heir associ 
ated connections for even the simplest operation. Instead, 
we created a single object that handles the open and close 
steps automatically, and also allows all of the intermediate 
data operations to be handled in the same box. This single 
To File box supports the block diagram metaphor because the 
user's original block diagram would not include open and 
close steps (unless this user is also a computer programmer), 
it would only have a box labeled "Append this measurement 
to the data file." The open and close steps are programming 
details that are required by traditional programming languages 
but are not part of the original problem. 

Or, consider the task of evaluating mathematical expres 
sions. In some common dataflow solutions, a simple opera 
tion such as 2xA+3 would require four objects and their 
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associated connections (two constants, one add operation, 
and one multiply operation). Using HP VEE's formula box 
requires only the single expression object to solve this prob 
lem. The point of a block diagram is to show an overview of 
how a complex system operates without regard to imple 
mentation details. Had HP VEE been implemented without a 
higher level of abstraction, the resulting graphical program 
would have had so many boxes and lines that it would have 
resembled a maze rather than a block diagram. 

Development Process 
We followed a fairly informal development lifecycle for HP 
VEE. It was based on the spiral lifecycle,1 which divides the 
development phase into a series of design/build/test cycles 
with a risk assessment before each. This worked very well 
for us for several reasons. Probably the most important fac 
tor was that the team was small and highly motivated. This 
made rigorous checkpoints and detailed design documents 
unnecessary since all of the team members worked very 
closely together toward the same goals. Another important 
factor was the use of an object-oriented design approach 
coupled with very careful design practices. This allowed us 
to design classes according to their interactions with the 
rest of the system without spending a great deal of time im 
plementing the internals of the classes. This is important in 
a spiral lifecycle because during each cycle, an entire class 
or set of classes may need to be reimplemented. Without an 
object-oriented approach, this would require an excessive 
amount of time rewriting other seemingly unrelated parts of 
the system. Another successful development decision was 
the early incorporation of a full-time software testing team 
to help us with the test phases of the lifecycle. 

Fig. 4. User panel for waveform 
plus noise application. 

The Search for Primitives 
The initial functionality was specified by the team based on 
our experience as frustrated users of third-generation lan 
guages (3GLs) such as Pascal, C, and BASIC. Certain tasks 
appeared over and over on the "I wish there were some 
other way to do this ..." list. Experience had already shown 
that library of limited flexibility, the usual subroutine library 
approach did not offer the type of productivity increase being 
sought. However, with our executable block diagram meta 
phor, we felt that many of these tasks could be implemented 
as primitives in HP VEE while still providing the necessary 
flexibility. 

Foremost among these tasks were data management, engi 
neering graphics, instrument control, and integration of mul 
tiple applications. In each case we were convinced that a 
higher level of abstraction could be developed that would be 
flexible yet simple enough to require only minor configura 
tion specification from the user in most situations. 

Data Management 
To tame the basic data management problem we developed 
the container architecture. Containers hold data, either ar 
rays or scalars, of a wide variety of data types, and provide a 
rich set of mathematical intrinsics to operate on that data. 
Many operations such as type conversion and array process 
ing, formerly left to the user, are incorporated into these 
object abstractions in a fashion that makes them relatively 
transparent. 

Another aspect of data management involves interfacing 
with the file system because so much effort must be ex 
pended on it when using 3GLs. We developed objects that 
offer the powerful input/output capabilities of many 3GLs, 
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Object-Oriented Programming in a Large System 

The biggest problem with a large software development effort is that there is just 
too much complexity for the human mind to manage. The obvious solution is to 
add more people to the project so that the members are not asked to manage 
more than their individual abilities permit. Unfortunately, the law of diminishing 
returns applies, since each additional team member adds a very large communica 
tion and training load on the rest of the team. In addition, there are increased 
opportunities for disagreement and conflict. 

In some to development of large software systems is like one person trying to 
dig a canal using only a shovel. Yes, it is possible, but probably not in that person's 
lifetime. If more people are assigned to the task, it can be done more quickly, but 
only at an enormous cost. However, if equipped with the right tools (backhoes, 
earth movers, etc.), one person can accomplish so much that only a small number 
of people are required to complete the project within a reasonable amount of time. 

This reducing amount the idea behind object-oriented programming. By reducing the amount 
of complexity that one software developer must manage, that one person can be 
responsible for a much larger portion of the system. The result is that much higher 
productivity is attainable since smaller teams can be used, thereby avoiding the 
effects of the law of diminishing returns. Features of object-oriented programming 
such as larger and inheritance allow one person to maintain a much larger 
portion of a large system than would be possible with a traditional approach. 

Encapsulation is probably the strongest reason to use an object-oriented approach 
for a large system. Object-oriented systems encapsulate functionality by combin 
ing data and associated routines into one package (the class) and then disallowing 
access code the data except through one of the routines. When this is done, code 
outside of the class is less likely to have dependencies on the structure or mean 
ing of the data in the class since its only access to the data is through the access 
routines rather than directly to the data. This allows a class to define the exter 
nally visible interface separately from the internal implementation. Because of this 
basic structure, a class or even an entire hierarchy of classes can be completely 
rewritten without affecting other parts of the system as long as the externally 
visible interface remains constant. 

Inheritance is another reason to use an object-oriented approach in a large system. 
Inheritance allows a new class to be written simply by specifying additions or 

changes to an existing class. This means that just a few lines of added code can 
provide is significant increase in functionality. The other benefit of inheritance is 
that code reuse of internal routines is increased substantially. For example, there 
is only text single-line text editor in HP VEE, which is used for all single-line text 
entry fields. However, since it is easy to add to the behavior of the editor class 
through inheritance, the numeric fields that allow constant expressions as numeric 
input editor. just a very small incremental effort over the original line editor. They 
simply add to the "accept" mechanism at the end of an editing session and pass 
the typed string to the parser for evaluation as an expression before attempting to 
record the numeric result. 

However, features such as encapsulation and inheritance do not automatically 
result practices a system that is easier to maintain and build. Very careful design practices 
must be followed and the team members must be motivated to do high-quality 
work. partitioning the most important design practice is careful partitioning of the 
system so that complexity in one area is not visible in an unrelated area. 

An object-oriented approach coupled with careful design practices will often 
cause the software development effort to seem harder than with a more tradi 
tional approach. For example, in a traditional approach, if a variable in one module 
needs reference be accessed in another module, it is easy to declare that reference directly 
to the compiler. In an object-oriented approach, it is common for these variables to 
exist only as instance variables, which are not allocated until the owning class 
has been instantiated. This means that the compiler cannot reference a value 
directly because it doesn't exist until run time. Therefore, a more complete solu 
tion means be devised to find the required value. This usually means that a mes 
sage the for the value must be sent to the object that knows the answer with 
out ever the accessing the variable. This sounds harder, and it is, but in the 
long run the resulting code is much more maintainable and extendable. 

William L Hunt 
Development Engineer 
VXI Systems Division 

but present them to the user by means of an interactive dia 
log box to eliminate the need to remember syntax. Each of 
these dialog boxes represents a single transaction with the 
file such as read, write, or rewind, and as many transactions 
as necessary can be put into a single file I/O object. 

Engineering Graphics 
For engineering graphics, the task of finding a higher level 
of abstraction was relatively easy. Unlike data management, 
engineering graphics is a fundamentally visual operation and 
as such it is clear that a single element in a block diagram 
can be used to encapsulate an entire graphical display. 
Therefore, we just developed the basic framework for each 
type of graph, and we present these to the user as graph 
displays that require only minor interactive configuration. In 
this area we had a rich set of examples to draw from because 
of the wide variety of highly developed graphs available on 
HP instruments. In some cases, we were even able to reuse 
the graphics display code from these instruments. 

Instrument Control 
Instrument control is a collection of several problems: 
knowing the commands required to execute specific opera 
tions, keeping track of the state of the instrument, and (like 
file I/O) remembering the elaborate syntax required by 3GLs 
to format and parse the data sent over the bus. We developed 

two abstractions to solve these problems: instrument drivers 
and direct I/O. 

Instrument drivers have all of the command syntax for an 
instrument embedded behind an interactive, onscreen panel. 
This panel and the driver behind it are developed using a 
special driver language used by other HP products in addi 
tion to HP VEE. With these panels the task of controlling the 
instrument is reduced to interacting with the onscreen panel 
in much the same fashion as one interacts with the instru 
ment front panel. This is especially useful for modern card- 
cage instruments that have no front panel at all. Currently 
HP provides drivers for more than 200 HP instruments, as 
well as special applications that can be used to develop 
panels and drivers for other instruments. 

In some situations instrument drivers are not flexible 
enough or fast enough, or they are simply not available for 
the required instruments. For these situations, we developed 
direct I/O. Direct I/O uses transactions similar to the file I/O 
objects with added capabilities for supporting instrument 
interface features such as sending HP-IB commands. Direct 
I/O provides the most flexible way to communicate with 
instruments because it gives the user control over all of the 
commands and data being sent across the bus. However, 
unlike instrument drivers, the user is also required to know 
the specific commands required to control the instrument. 
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To simplify the process of reconfiguring an instrument for a 
different measurement, direct I/O also supports the upload 
ing and downloading of learn strings from and to the instru 
ment. A learn string is the binary image of the current state 
of an instrument. It can be used to simplify the process of 
setting up an instrument for a measurement. A typical use of 
this feature is to configure an instrument for a specific mea 
surement using its front panel and then simply upload that 
state into HP VEE, where it will be automatically down 
loaded before making the measurements. Thus, the user is 
saved from having to learn all of the commands required to 
initially configure the instrument from a base or reset state 
before making the measurement. In most cases the user is 
already familiar with the instrument's front panel. 

Multiple Applications 
Multiple application integration turned out to be one of the 
easiest tasks in HP VEE, since the inherent parallelism of 
multiprocess operations can be expressed directly in a 
block diagram. Each element of a block diagram must 
execute only after the elements that provide data for its in 
puts. However, two elements that do not depend on each 
other can execute in any order or in parallel. This feature, 
along for the powerful formatting capabilities provided for 
interprocess communication, allows the integration and 
coordination of very disparate applications regardless of 
whether they exist as several processes on one system or as 
processes distributed across multiple systems. The only 
object abstractions required to support these activities are 
those that act as communication ports to other processes. A 
pair of objects is available that supports communication 
with local processes (both child and peer) using formatting 
capabilities similar to those used by file and instrument I/O. 

Finally, we needed to develop objects that would encapsu 
late several other objects to form some larger user-defined 
abstraction. This abstraction is available using the user ob 
ject, which can be used to encapsulate an HP VEE block 
diagram as a unit. It can have user-defined input and output 
pins and a user panel, and from the outside it appears to be 
just like any other primitive object. 

Refining the Design 
While still in the early cycles of our spiral lifecycle, we 
sought a limited number of industry partners. This enabled 
us to incorporate design feedback from target users attempt 
ing real problems well before encountering design freezes. 
Although there were fears that such attempts would slow 
our development effort because of the additional support 
time required, we felt that the payback in design refinement 
for both user interface elements and functional elements 
was substantial. 

One example of such a refinement in the user interface is 
the automatic line routing feature. Before line routing was 
added, our early users would often spend half of their time 
adjusting and readjusting the layouts of their programs. 
When asked why they spent so much time doing this, they 
generally were not certain, but felt compelled to do it any 
way. We were very concerned about the amount of time 
being spent because it reduced the potential amount of 

productivity that could be gained by using HP VEE. Thus 
we added automatic line routing and a snap grid for easier 
object alignment so that users would spend less time trying 
to make their programs look perfect. 

An example of a refinement in the functional aspects of the 
product is the comparator object. Several early users en 
countered the need to compare some acquired or synthe 
sized waveform against an arbitrary limit or envelope. This 
task would not have been so difficult except that the bound 
ary values (envelope) rarely contained the same number of 
points as the test value. Before the comparator was devel 
oped, this task required many different objects to perform 
the interpolation and comparison operations on the wave 
forms. The comparator was developed to perform all of 
these operations and generate a simple pass or fail output. 
In addition, it optionally generates a list of the coordinates 
of failed points from the test waveform, since many users 
want to document or display such failures. 

Conclusion 
Early prototypes of HP VEE were used for a wide variety of 
technical problems from the control of manufacturing pro 
cesses to the testing of widely distributed telecommunica 
tions networks. Many began exploring it to orchestrate the 
interaction of other applications, especially where network 
interconnections were involved. 

Current experience suggests that the block diagram form of 
problem expression and its companion solution by means of 
dataflow models has wide applicability to problems in many 
domains: science, engineering, manufacturing, telecommu 
nications, business, education, and many others. Many 
problems that are difficult to translate to the inline text of 
third-generation languages such as Pascal or C are easily 
expressed as block diagrams. Potential users who are ex 
perts in their own problem domain, but who have avoided 
computers in the past, may now be able to extract real value 
from computers simply because they can express their prob 
lems in the more natural language of the block diagram. In 
addition, large-scale problems that require the expert user to 
orchestrate many different but related applications involv 
ing multiple processes and/or systems can now be handled 
almost as easily as the simpler problems involving a few 
variables in a single process. 
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Developing an Advanced User 
Interface for HP VEE 
Simplicity and flexibility were the primary attributes that guided the user 
interface development. Test programs generated with HP VEE can have 
the same advanced user interface as HP VEE itself. 

by William L. Hunt 

HP VEE, Hewlett-Packard's visual engineering environment, 
was developed as a programming tool for nonprogrammers. 
In the past, computer users were required to move into the 
computer's domain. Our goal for HP VEE was to bring the 
computer into the user's domain. This meant developing a 
system that operates in the way that our target users expect. 

To accomplish this goal, ease of use was of critical impor 
tance. However, because most target users of HP VEE are 
highly educated technical professionals, simple-minded ap 
proaches to user interface design were not appropriate. For 
this audience, the system must be powerful and flexible, but 
must not become an obstacle because of overprotection. 

With these constraints in mind, we decided that the primary 
attributes of HP VEE should be simplicity and flexibility. 
Learnability was also considered to be important, but we 
felt that no one would bother to learn the system unless it 
were a truly useful and powerful tool. Therefore, we felt that 
we could compromise some learnability in situations where 
a great deal of the power of the system would be lost if 
learnability were our primary goal. Our overall approach, 
therefore, was to design a system that is as natural to learn 
and use as possible and powerful enough that our customers 
would be excited about learning how to use it. 

Development Guidelines 
In general, simplicity is very important in a user interface 
because it frees the user from having to worry about unnec 
essary details or rules. The underlying goal of a good user 
interface is to increase the communication bandwidth be 
tween the computer and the user. However, this does not 
mean that there should be a myriad of displays and indica 
tors. In fact, quite the opposite is true. The more things there 
are for the user to comprehend, the greater the chance that 
something will be missed. The goal, therefore, should be to 
reduce the amount of data that the user must be aware of 
and present the essential data in the simplest and most com 
pact way possible. Similarly, any piece of data presented to 
the user should always be presented in a consistent way be 
cause this is known to increase comprehension dramatically. 

An example of a simple way to present information to the 
user is the 3D look used in the OSF/Motif graphical user 
interface and more recently in other systems such as Micro 
softÂ® Windows. When used properly, the 3D borders can be 
used to communicate information about the state of indhid- 
ual fields without consuming any additional display space. 

Fig. 1 shows how HP VEE uses the 3D look to identify how 
fields will respond to user input. Fields that are editable are 
displayed as recessed or concave. Buttons and other fields 
that respond to mouse clicks are shown as convex. Fields 
that are only used as displays and do not respond to input 
are shown as flat. These states are very simple to compre 
hend because the three states are unique in the way that 
they look and operate. Without realizing it, users will natu 
rally learn how to identify which fields are editable, which 
fields can be activated, and which fields will not respond to 
input. This 3D display technique allows these states to be 
displayed without any additional display area. 

Fundamentally, HP VEE was designed around the concept 
of direct manipulation. This means that wherever possible, a 
setting can be changed by operating directly on the display 
of that setting. This results in a significant simplification for 
the user since special operations or commands are not gen 
erally required to make changes to settings. For example, 
the scale of a strip chart is shown near the edges of the 
graph display (Fig. 2). If the user wants to change the graph 
scaling, the limit fields themselves can be edited. It is not 
necessary to make a menu choice to bring up a pop-up dia 
log box for editing the scale. In many other systems, making 
any change requires a menu pick. This effectively reduces a 
system to a command-line interface that happens to use a 
mouse and menus instead of the keyboard. Such a system is 
no easier to use than the command line interface systems of 
the past. 

Flexibility is more important for an easy-to-use system than 
for more traditional systems because there is a perception 
that power and ease of use cannot be combined in the same 
system. In the past, powerful systems have generally been 
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Fig. some A view containing a noneditable field, two buttons, and some 
editable fields. 
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Fig. 2. Direct manipulation is useful for settings such as graph 
limits. 

hard to use, and easy-to-use systems have generally not 
been very flexible or powerful. To overcome this perception, 
therefore, an easy-to-use system must be very powerful so 
that potential customers' fears can be overcome. When de 
signing HP VEE, we were very careful to avoid limiting flexi 
bility wherever possible. It often seemed as if we were faced 
with a choice between ease of use and flexibility. However, 
with careful consideration of the alternatives, we usually 
found that the more flexible approach could be implemented 
with an easy-to-use interface. 

Flexible and powerful systems are naturally very complex 
because there are so many features and capabilities to re 
member. In these systems, it is extremely important that each 
area of the system operate in a way that is consistent with 
the rest of the system because even the most advanced users 
are rarely familiar with all aspects of the system. Users must 
be able to rely on their experience with other parts of the 
system to help guide them through the unfamiliar areas. 
For this reason, consistency was an important guideline 
throughout the development of HP VEE. 

High performance for interactive operations is critical be 
cause users will become frustrated using a product that is 
too slow. Very few users will be happy if they must wait an 
inordinate amount of time before a particular operation is 
complete. The allowable time for the system to complete a 
task depends on the nature of the task and what the user is 
likely to be doing at the time. For example, a key press 
should be echoed back to the user within about 100 ms or 
so. If it takes longer, the user may press the key again think 
ing that the system didn't get the first one. A pop-up dialog 
hriY nr  menu should appear  within ahnnt  500 ms.  Other    

tasks such as loading a file can take many seconds before 
the user will become annoyed because of sluggish perfor 
mance. We created a list of about ten different interactive 
operations for which we felt that performance was an im 
portant goal. On all supported platforms, many of the opera 
tions in this list such as the pop-up menus and dialog boxes 
are completed within the required time. Unfortunately, there 
are still a few operations that are completed within the spe 
cified time limits only on the very fast HP 9000 Series 700 
workstations. On the other hand, we have received very few 
complaints about interactive performance, so our time limits 
may have been overly stringent. 

In some situations, such as saving a file to the disk, perfor 
mance1 simply cannot be guaranteed. In these cases, continu 
ous feedback indicating progress being made is important. 

Otherwise, it isn't easy to tell whether something is happen 
ing or not. In HP VEE. all user-invoked operations that could 
take more than about 200 ms will result in a change to the 
mouse cursor. Some of these cursors represent specific ac 
tivities such as reading from or writing to the disk. For other 
situations, a general hourglass cursor is used. Any action 
that is expected to take longer than one or two seconds is 
also accompanied by a pop-up message box that indicates 
that the operation is in progress. 

Reducing the total number of mouse clicks, menu choices, 
and various other adjustments required of the user was a 
major challenge. Each adjustment required of the user, no 
matter how easy, will reduce the user's overall effectiveness. 
For this reason, HP VEE is designed to do as much as pos 
sible with default settings while allowing adjustments if 
more control is desired. Other systems often require that the 
user fill out a form each time a new object is selected from 
the menu. In most cases, HP VEE will insert default values 
for all settings and then allow the user to change them later 
if it becomes necessary. 

System messages for errors and other reasons are an espe 
cially important source of difficulty or frustration for users. 
Most software developers seem to take the attitude of a hos 
tile enemy when presenting the user with an error message. 
However, errors are seldom true user mistakes, but instead 
are usually triggered by failings in the system either because 
it misled the user or because it did not adequately protect 
the user from making the mistake in the first place. In many 
cases in HP VEE, we were able to avoid generating errors 
simply by restricting available choices to those that would 
not result in an error. For example, if a certain combination 
of selections will cause an error, we show them as mutually 
exclusive choices. In cases where such restrictions could 
not be used to avoid the potential for an error, we worked to 
simplify the interface so that users would be less likely to 
make mistakes in the first place. In cases where errors were 
unavoidable, we kept the attitude that error messages should 
help the user complete a task. We tried to remember that 
the user generally has a valid reason for performing the 
operation that resulted in an error. 

Two kinds of messages that are common in many systems 
are not present in HP VEE. The first is the message "Please 
wait." It is irritating to users because they don't want to wait 
and they are being instructed to do so. The message is also 
unnecessary since more descriptive messages can be used 
instead. Messages such as "Reading from file program!" are 
much more informative and are nut-nearly so annoying. Theâ€” 
other common message is a confirmation box that asks "Are 
you sure?" This is also very annoying because the user sel 
dom initiates any operation without being pretty sure about 
wanting to perform that operation. There are really two rea 
sons for asking "Are you sure?" One is to caution the user 
about data loss and the other is to protect against accidental 
requests. 

In HP VEE, we solve the first situation by asking a question 
such as "Save changes before clearing workspace?" This has 
the same result as "Are you sure?", but does not sound as if 
the user's choice (or sanity) is being questioned. 

In the second situation, accidental requests are better solved 
by making the input mechanisms easier to operate without 
error or by making corrections easy to perform. For example, 
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instead of asking "Are you sure?" to find out if the user really 
wants to delete an object, HP VEE puts the deleted object 
into the cut buffer so that if the user decides that a mistake 
was made, the paste operation can be used to restore the 
deleted object. 

Attention to detail is very important to a user. Most systems 
available today lack the small details that make a system 
more convenient and easier to use. In HP VEE, we have at 
tempted to pay attention to as many of these small details as 
possible. For example, when connecting a line to a box, an 
outline is displayed around the pin that would be connected 
if the line were released at that point. Another example of a 
very small detail is that HP VEE allows objects to be resized 
as they are being placed on the workspace for the first time. 
These seemingly minor details help reduce the amount of 
frustration that users often feel. 

Program Visualization Features 
In a traditional programming environment, the programmer 
must spend a large fraction of the development time think 
ing about details of the programming process including the 
language syntax, debuggers, and so on. Since HP VEE allows 
the user to think almost exclusively in terms of the problem 
domain, most of the development time and effort is spent on 
solving the problem instead of the programming details. 
This is the primary source of the productivity gains that 
many users of HP VEE have experienced. However, even 
though HP VEE allows programs to be expressed directly in 
terms of the problem, not all user-written programs will run 
correctly the first time. Although the so-called accidental 
complexities1 of program development such as language 
syntax and semantics have been reduced or even eliminated, 
the fundamental complexities of the problem itself still re 
main. Therefore, once an HP VEE program is developed, it is 
likely that some aspect of it will not quite work as expected. 
For this reason, we developed several tools that can be used 
to visualize the execution of a program to help identify the 
source of any problems. 

Show Execution Flow animates the execution of the program by 
outlining each object as it begins to execute and then eras 
ing that outline when execution is complete. Besides helping 
to visualize how the program executes, this is useful when 
trying to understand performance issues, since an object in 
the program that consumes a lot of time will be highlighted 
for more time than other objects. HP VEE also has a timer 
object, which allows a more objective way to measure 
performance. 

Show Data Flow animates the movement of data as it travels 
between objects in the program by displaying an icon mov 
ing rapidly along each line as data flows across it. This helps 
the user visualize the relationships between the data and the 
execution of the objects of a dataflow program. Both Show 
Execution Flow and Show Data Flow slow the execution of HP 
VEE programs so much that they are designed to be turned 
on and off separately. 

All data in HP VEE has additional information such as size 
and shape associated with it. This information is maintained 
so that one operation can work with a variety of different 
data types and shapes. For example, math functions such as 
sin( ) can operate on either an individual number or an array 
of numbers with any number of elements. This is possible 
because the size and number of dimensions are packaged 
with the data. Other information such as the name of the 
data and mappings (the implied domain of the data) can also 
be associated with the data. The line probe feature allows 
the user to examine the data and this associated information 
at any time. 

The execution of a program can be halted when execution 
reaches a particular object simply by setting that object's 
breakpoint flag. Breakpoints can be set on any number of 
objects at any time. When execution reaches an object with 
its breakpoint flag set, the program will pause and an arrow 
pointing to that object will appear. At that point the step 
button can be used to single-step the program one object at 
a time or the line probe can be used to examine data. 

If an error occurs during execution of the program and no 
error recovery mechanism has been attached, a message 
will be displayed and an outline will highlight the source of 
the error visually. This allows the user to locate the source 
of the error more quickly. 

User Interface for HP VEE Programs 
Since a user of HP VEE should be able to generate programs 
with the same advanced user interface as HP VEE itself, 
several important capabilities have been incorporated into 
HP VEE to make the task of building impressive-looking 
programs simple. 

For example, data can be entered using a variety of data 
entry objects. The simplest of these is a text field that accepts 
a single line of textual data. Numeric fields of various types 
such as integer, real, complex, or polar complex accept the 
appropriate numeric data. In addition, these numeric fields 
can accept constant expressions such as "SQRT(45)" or 
system-defined constants such as "PI." When typed, these 
constant expressions are immediately evaluated and the 
result is converted to the expected type by the input field. 
Since all editable fields in HP VEE share the same editing 
code internally, any numeric field in the system that requires 
a numeric entry can also accept a constant expression. 

There are other more advanced mechanisms for entering 
data or specifying selections to an HP VEE program. Integer 
or real numeric input can be generated within a predefined 
range by using the mouse to drag the handle of a slider ob 
ject. Selections from a list of acceptable values can be made 
using an enumerated list box, which can be displayed as 
radio buttons, as a single button that cycles through the list 
of values, or as a button that accesses a pop-up list box of 
choices. An HP VEE program can be designed to pause until 
the user is ready to continue by using the Confirm button. 
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Data can be displayed in a variety of ways. In addition to 
textual displays, real or integer numbers can be displayed 
on a meter object, which can show \isually where a number 
falls within a range. Graphical displays such as XY graphs 
and polar plots show two-dimensional plots of data and 
can be interactively scrolled or zoomed. Stripcharts graph 
a continuous scrolling history of the input data. 

All of these input and output types would have limited value 
if they could only be displayed when the rest of the HP VEE 
program with all of its lines and boxes is also visible. For 
this reason, HP VEE is designed with a feature called user 
panels, which allows an advanced user interface to be at 
tached to a user-written HP VEE program. The user panel is 
built using an approach similar to many of the available user 
interface builders. Elements to be placed on the user panel 
are selected from the HP VEE program and added to the 
panel. The user can then move and resize these elements as 
appropriate for the design of the panel. Other layout options 
such as whether a title bar appears can also be adjusted. 
Since the elements on the user panel are selected from the 
user's program, no external code is required and the finished 
program is easier to build than with most user interface 
builder tools. 

Another important aspect of an advanced human interface is 
the ability to hide data until the user has asked to examine 
it. HP VEE is designed with a feature called Show On Execute 
which allows HP VEE programs to use pop-up windows to 
hide data until a user request is received. This works by 
associating a user panel with a user object (similar to a sub 
routine in traditional programming languages) and enabling 
the Show On Execute feature. When the user object begins 
executing, the associated user panel is automatically dis 
played. When execution of the object is complete, the user 
panel is erased. Messages such as "Writing test results to file" 
can be displayed using this mechanism simply by putting the 
appropriate message on the associated user panel. If it is 
desirable to pause the program until the user has finished 
examining the displayed panel, a confirm object can be used. 

Programs developed in HP VEE are highly malleable; they 
can be changed and adjusted as much as desired. However, 
in many situations it is desirable to protect the program 
from being changed. The secure feature in IIP VEE accom 
plishes this by displaying only the user panel and making it 
impossible to alter the program or even look at it after the 
program has been secured. 
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Fig. 3. Simplified class hierarchy of HP VEE. 

Using all of these features allows users to generate complete 
application programs with professional appearances without 
having to work outside of the simple dataflow environment. 

Internal Architecture 
Fig. 3 shows a simplified class hierarchy for HP VEE show 
ing some of the key classes in the system and how they re 
late to each other in the inheritance hierarchy. The Object 
class is at the root of this hierarchy and implements the fun 
damental protocol for all objects in the system. This includes 
creating, freeing, and copying objects. The key subclasses of 
Object include View, which maintains a rectangle on the dis 
play, Container, which holds a unit of data, and Device, which 
represents the inner workings of an element in an HP VEE 
block diagram. 

The fundamental visible element in HP VEE is implemented 
with the class called View. It maintains a single rectangular 
region on the display and can be transparent or a composite 
of other views. The ViewSd class adds a solid background 
color and a 3D border to View. 

Views are organized into a hierarchy tree based on the dis 
play stacking order. The root of this tree is called DispDriver. 
II is always mapped to overlay the system window allocated 
to HP VEE. It performs all low-level screen display opera 
tions such as drawing lines and filling regions. It also han 
dles the window system interface functions such as repaint 
requests and dispatching of input events. Fig. 4 shows a 
composite of views in a view hierarchy with some of the 
views labeled with the name of their associated class. Fig. 5 
shows the complete hierarchy tree of the views in Fig. 4. 
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Fig. 5. Display hierarchy tree. 

Subviews are views that are attached to another view called 
the superview in the display hierarchy tree. Subviews are 
clipped at the edges of their superview. In this way, each 
level of the view hierarchy tree limits the visual boundaries 
of all views below it. This view hierarchy indirectly de 
scribes the view stacking order, which ultimately controls 
which views appear to be on top and which ones are hidden. 

Each view maintains a description of the region on which it 
is allowed to display itself. This clip region is calculated by 
taking its own bounds, subtracting any region that falls out 
side the bounds of any view in its superview hierarchy, and 
then subtracting any views that partially or completely 
cover it or any view in its superview hierarchy. 

Repainting 
When repainting an area that it is maintaining, a view may 
either use the clip region to limit the areas it actually changes 
on the display, or it may paint any area that it owns and then 
paint every view that appears closer to the user in the view 
stack. The full view stack repaint method has nothing to 
calculate or check before it begins painting itself completely 
and then painting anything that might be on top of it. If noth 
ing is on top of it, then the complete stack repaint is very 
efficient because it is so simple. However, if there are many 
other views covering the view to be repainted, the full stack 
repaint will be very slow because of all of the unnecessary 
repainting that must be done. The clip region repaint method 
is much more efficient in this situation since only those 
areas that are directly visible to the user will be repainted. 
This means that no unnecessary repainting must be done. 

Unfortunately, the clip region is at best an approximation 
since views are allowed to display images of arbitrary com 
plexity (such as text) and be transparent in other areas. This 
gives the user the illusion that views can have any shape 
without incurring the performance penalties associated with 
nonrectangular views. It would be very costly to calculate 
these regions accurately, so only the approximation based 
on the rectangular view bounds is actually calculated. This 
means that repaints using the clip region method will not 
correctly update regions behind transparent areas of other 
views. Therefore, the clip region repaint method is used in 
only a few special cases. 

Input events such as mouse clicks are dispatched to individ 
ual views in the system using a two-phase search mecha 
nism. In the first phase, working from back to front, each 
view in the view stack where the event occurred asks the 
views in front of it to process the event. When there are no 
more views in front of the current view, the second phase 
begins with an attempt to consume the event. Working from 
front to back, each view in the view stack (as determined 
during the first phase) is given an opportunity to consume or 
ignore the event. If the view takes no special action, the 
event is passed to the next view down in the view stack. If 
the the view intends to consume the event, it does so by 
performing an action associated with the event such as indi 
cating that a button has been pressed and then marking the 
event as consumed. This process continues until the event is 
consumed, or until the DispDriver class is given the event (this 
class consumes all events). 

Other Classes 
The visible part of each object in an HP VEE program is 
maintained by the DevCarrier class. DevCarrier's job is to main 
tain the visual appearance of all objects in the system by 
showing the terminal pins, maintaining the various high 
lights and outlines required by HP VEE, and allowing vari 
ous editing operations on the user's program such as con 
necting lines and adjusting the sizes or positions of objects. 
DevCarrier does not display any object-specific information. 
That information is displayed by object-specific view 
classes, which are attached to DevCarrier as subviews. 

User objects are specialized objects that are built using a 
subclass of DevCarrier called SubProg. SubProg maintains a 
visual subprogram which acts just like a normal object when 
viewed from the outside, but contains an internal dataflow 
network of its own that is just like the main program. All of 
the dataflow networks in HP VEE are maintained by a class 
called ConView (context view). It is the gray background area 
behind the lines and boxes in a dataflow network. 

The top-level workspace environment class â€” IPEditor (iconic 
program editor) â€” is just a special case of SubProg and is 
therefore built as a subclass of SubProg. It is attached as the 
only subview of DispDriver and maintains the top-level editing 
environment. It is the same as SubProg, except that it must 
maintain the menu bar, run/stop buttons, and other features 
specific to the top level. 

The context view class (ConView) maintains a list of all ob 
jects in the context and the lines connecting them. When the 
context view is asked to repaint itself, it first paints its back 
ground color (gray, by default), and then paints all lines in 
the line list. Then each HP VEE object in the context is 
painted according to the stacking order. If an HP VEE object 
falls partially or completely outside the context view's 
bounds, then according to the clipping rules, that view will 
be only partially painted or not painted at all. 

The clipping and repaint algorithms allow an HP VEE pro 
gram to be visually much larger than the screen space al 
lotted to it. By adding navigation controls such as the back 
ground scroll capability, a very large dataflow network can 
be supported even on a comparatively small screen. 
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Model-Mew Architecture 
HP VEE is organized around a model-view architecture. This 
is similar to the model-view-controller architecture used in 
other object-oriented systems except that we chose to 
merge the functionality of the controller into the view. The 
fundamental assumption in the model-view architecture is 
that the internal data and program elements (the models) 
can operate without any knowledge of or dependence on 
their visual representations (the views). By separating the 
system at this natural boundary, both the views and the 
models can be written more simply without any unneces 
sary dependencies. One feature of this architecture is that 
one model can be attached to any of several different views 
without any special support in the model. For example, a 
model that contains a real number can be attached to a text 
field or to a meter. Since the properties of the number do 
not change based on how it is displayed, no changes are 
required of the class that holds the number. However, since 
there are few similarities between a meter view and a text 
view, they need not be built with one view class. 

User panels are one area that really benefit from the split 
between models and views. When the user selects an HP 
VEE object such as a slider and asks that it be added to the 
user panel, several things happen internally to make that 
happen. First, if a user panel has not been created for this 
program or user object, one is created. The user panel class 
is similar in concept to the context view class, but without 
support for interconnections required for dataflow net 
works. Next, an instance of the PanelCarrier class is created to 
hold a copy of the object-specific part of the slider view. 
This copy is created from the original and attached to the 
new panel carrier and to the original slider model (which is 
not copied). The panel carrier is then attached to the user 
panel view. 

One of the most significant architectural impacts of the im 
plementation of user panels is the fact that there can be 
many independent views attached to the same underlying 
model at the same time. Because of this architecture, it is 
easy for panels from user objects to be added as a unit to 
higher-level panels. This allows the creation of complex 
panels consisting of grouped controls and displays. 

The DispDriver class is designed to be the only place where 
calls to the underlying window system (such as the X Win 
dow System) occur. This allows the display driver to be re 
placed if appropriate when porting to a new platform. Dur 
ing development, for example, we used a driver written to 
talk directly to the display card of an HP 9000 Series 300 
computer because it ran so much faster than the window 
systems. Now that very high-performance workstations are 
available, this is no longer necessary. 

Printing is handled simply by replacing DispDriver with the 
printer driver class, which knows how to perform graphics 
operations on a printer. The information intended for the 
printer is just "displayed" on the printer and no special 
printer support must be developed aside from the printer 
driver itself. This also allows the print output to match the 
screen display very nicely. 
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HP VEE: A Dataflow Architecture 
HP VEE is an object-oriented implementation. Its architecture strictly 
separates views from the underlying models. There are two types of 
models: data models and device models. Special devices allow users to 
construct composite devices. 

by Douglas C. Beethe 

The HP VEE dataflow programming environment was devel 
oped that the specific objective of providing an interface that 
would allow users to express a problem in block diagram 
form on the screen and then execute it directly. Dataflow 
programming was chosen because of its direct correlation 
to the block diagram models we wished to emulate. 

Previous efforts in industry and academia related to data 
flow programming had yielded some interesting results, but 
general applicability had not yet been established. Thus our 
early research efforts were directed primarily at the question 
of whether we could solve some of the problems that had 
plagued earlier attempts and prove general applicability. 

The design and construction of HP VEE used object-oriented 
technology from the beginning. We had enough experience 
with procedural coding technology to realize that a project 
like HP VEE would be too complex to achieve with proce 
dural technology. The architecture that evolved from this 
development is the subject of this article. The design of vari 
ous elements of the underlying HP VEE architecture will be 
discussed as will the manner in which they work together to 
produce the executable block diagram as a dataflow model. 

The Model- View Paradigm 
One of the characteristics of the HP VEE architecture that is 
common to most object-oriented implementations is the 
strict separation between models and views. Most users are 
familiar with the world of views, and indeed often make no 
distinction between the view of an object and its underlying 
model. 

From a functional point of view the model is the essence of 
an object, incorporating both the data (state variables) that 
gives the object its uniqueness, and the algorithms that oper 
ate on that data. In HP VEE, by definition, the model oper 
ates independently of the view, and does not even know of 
the existence of any graphical renderings of itself , except as 
anonymous dependents that are alerted when the state of 
the model changes (see Fig. 1). 

There are many examples of applications that have views 
possessing no underlying functional models. Consider the 
various draw and paint programs, which allow the user to 
create very sophisticated views that, once created, are inca 
pable of performing any function other than displaying 
themselves. Likewise, there are numerous examples of ap 
plications that support very sophisticated functional models 
but lack any ability to display a view of those models, be it 
for passive display of state or for active control. 

Most of the scientific visualization software appearing today 
is used to create views of the data output of functional mod 
els that have little or no display capability. Most of the views 
that are seen by the HP VEE user are actually graphical ren 
derings of the states of underlying models. In the interactive 
mode, access to the models is by means of these views, 
which communicate with their respective models to change 
their the initiate execution, and so forth. For example, the 
view of the ForCount iterator has a field in which the user can 
enter the number of times the iterator should fire at run 
time. Upon entry, this value is sent to the underlying device 
model, where it is kept as a state variable. When this state 
variable is changed, the model sends out a signal to anyone 
registered as a dependent (e.g., the view) that its state has 
changed, and the view then queries the model to determine 
the appropriate state information and display it accordingly 
(see Fig. 2). 

This strict separation between model and view might seem 
excessive at first, but it results in a partitioning that makes 
the task of generating the two different kinds of code (very 
different kinds of code!) much easier from the standpoint of 
initial development, portability, and long-term code mainte 
nance. It also eases the job of dealing with noninteractive 
operations in which HP VEE is running without any views at 
all, either by itself or as the slave of another application. 
And finally, this separation eases the task of developing ap 
plications that must operate in a distributed environment 
where the models live in one process while the views are 

State Variables 

â€¢ Array Size 

â€¢ Array Data 

Operations 

â€¢ Set/Get Array Size 
â€¢ Set/Get Value at <index> 

â€¢ Sort Array Values 
â€¢ Get Mm/Max Value 

Fig. 1. Two different views of the same underlying model. 
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Edi t  Set  Count  ( l  
Tel l  Al l  Dependents (Views) 

that Count Has Changed 

Display: Get Count 
Value as Formatted '  
Text (for Display! 

ForCount  Model  
State Variables 

Operations 

â€¢â€¢ Set Count <value> 
â€¢ Get Count Text 

Fig. time. Interaction of a view and the underlying model at edit time. 

displayed by another process, possibly on an entirely differ 
ent system. This last aspect is becoming more and more 
important in an application world that is taking increasing 
advantage of networked systems. 

HP VEE itself is composed of two kinds of models. The first 
is the device model, which acts like a black box having in 
puts, outputs, and some operational characteristic that 
transforms the data at the inputs to the result at the outputs. 
The second is the data model (container), which handles the 
transport of information along the data lines, which inter 
connect devices. The data model also provides mathemati 
cal functions, which can be invoked to operate on the data, 
and formatting and deformatting functions, which change 
the representation of the data when required for display or 
for communication with some other application that requires 
the data in a different form. Both types of models will be 
discussed in some detail. 

Data Models 
The fundamental abstraction for information in HP VEE is 
the container object (Fig. 3). Containers can hold data for 
any of the supported data types: text, enumerated, integer, 
real, complex, polar complex, coordinate, waveform, spec 
trum, and record. Both scalars (zero dimensions) and arrays 
from one to ten dimensions are supported. In addition, the 
dimensions of array containers can be mapped in either lin 
ear or logarithmic fashion from a minimum value at the first 
cell of a dimension to a maximum value at the last cell of 
that dimension. This allows an array of values to have some 
physical or logical relationship associated with the data. For 
example, a one-dimensional array of eleven measurements 

Container Model  

State Variables 

â€¢ Name 
â€¢ Data Type 
â€¢ Number of Dimensions: 0 10. 

â€¢ Dimension Sizes 

â€¢ Dimension Mappings [from, through] 

Operations 

â€¢ Configuration 
â€¢ Value Assignment/Access 
â€¢ Type Conversion 

â€¢ Mathematics 
â€¢ Text Generation 

Fig. 3. Container model attributes. 

Supported Data Types 
â€¢ Text 
â€¢ Enum 
â€¢ Integer, Real, Time 
â€¢ Complex, Polar Complex 

â€¢ Coord, Waveform, Spectrum 
â€¢ Record 

can be mapped from 0 to 32 cm to indicate the physical rela 
tionship of the values in each position in the array to some 
real-world phenomenon. The first value would be at 0 cm, 
the next at 3.2 cm. the next at 6.4 cm. and so on. 

One of the properties of containers that is used extensively 
in HP YEE is the knowledge of how to transform to another 
type on demand. The automatic form of this transform is 
allowed only for transforms that incur no loss of informa 
tion. This has the effect of allowing most promotions, but 
disallows any automatic demotions. For example, integer 
can be promoted to real, and real to complex or polar com 
plex, but complex cannot be demoted automatically to real. 
To do so would likely cause the loss of information that 
would not reappear in the promotion of that real value back 
to complex. An interesting special case of this is the revers 
ible transformation between waveform and spectrum (time 
and frequency domains). While these data types seem to 
have the same irreversible relationship to each other as the 
real and complex types just discussed, it is a well-known 
fact that a reversible transformation exists between these 
two special types by means of the Fourier transform. For 
example, a 256-point waveform is transformed to a 129-point 
spectrum (ignoring the symmetrical values with negative 
frequency), and the same spectrum regenerates the original 
256-point waveform by means of the inverse Fourier 
transformation (Fig. 4). 

Another powerful property of containers is their inherent 
knowledge of data structure as it applies to mathematical 
operations. At first glance, operations such as addition and 
subtraction seem relatively simple, but only from the stand 
point of two scalar operands. For other structural combina 
tions (scalar + array, array + scalar, or array + array) the task 
requires some form of iteration in typical third-generation 
languages (3GLs) like C that has always been the responsi 
bility of the user-programmer. Containers encapsulate these 
well-understood rules so that the user deals with, say, A and 
B simply as variables independent of structure. When any of 
the nontrivial combinations is encountered, the containers 
decide among themselves if there is an appropriate struc 
tural match (scalar with any array, or array with conforma! 
array) and execute the appropriate operations to generate 
the result. 

Other more complicated operations with more robust con 
straints (e.g., matrix multiplication) are handled just as easily 
since the appropriate structural rules are well-understood 
and easily encapsulated in the containers. These properties 
aid the user in two ways. First, the user can express power 
ful mathematical relationships either in fields that accept 

Waveform Display 

_n_n_n 
0  m s  2 0  m s  

Fig. 4. Automatic transformation of a time-domain waveform 
(e.g., 256 real values, 0 to 20 ms) to a frequency-domain spectrum 
(129 complex values, 0 to 6400 Hz). 
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Device  Mode l  

State Variables 

â€¢ Name and Description 

â€¢ Input/Output Configuration 

â€¢ Device-Specific Properties 

Operations 

â€¢ Add/Delete Inputs and Outputs 
â€¢ Run-Time Validation 
â€¢ Device-Specific Execution 

â€¢ Propagation 

Fig. 5. Attributes of a simple device model. 

constant expressions or in any of several delayed-evaluation 
fields the Formula, If/Then, ...) without having to deal with the 
cumbersome iteration syntax of 3GL programming. This by 
itself has the pleasant side effect of eliminating much if not 
most of the iteration in many applications, compared to their 
3GL equivalents. Second, the interconnection of the various 
objects that make up a model in HP VEE is much simpler 
when any of the inputs is constrained to a specific data type. 
Since the containers know how to respond to most requests 
for type change, the user is freed from the cumbersome task 
of explicitly changing (casting) the original type to the re 
quired type. For example, the inputs to a spectral display 
that requires a spectrum input will not disallow connection 
to a waveform (time-series data) because the output supply 
ing the waveform will transform it to a spectrum on demand 
at run time. This same capability is used during the evalua 
tion of any mathematical expression, thus allowing the user 
to intermix types of operands without explicit type casting. 

Device Models 
Fig. 5 shows the attributes of a simple device model. Each 
device can have its own inputs and outputs. Many have user- 
controllable parameters that are accessed as constants 
through the panel view of the device or as optionally added 
inputs. In general, the device will execute only when each of 
the data inputs has been given new data (including nil data). 
Thus the data inputs to any given device define a system of 
constraints that control when that device can execute. This 
turns out to be quite natural for most users since the data 
relationships that are depicted by the data lines that inter 
connect devices generally map directly from the block dia 
gram of the system in question, and often are the only form 
of constraint required for the successful execution of a 
model. 

There are numerous cases, however, where an execution 
sequence must be specified when no such data dependen 
cies exist. Such cases typically fall into two categories: 
those where there is some external side effect to consider 
(communications with the real world outside my process) 
and those that deal explicitly with real time. To deal with 
this situation we developed the sequence input and output 
for each device (on the top and bottom of the device, re 
spectively), as shown in Fig. 6. The sequence output be 
haves like any other data output by firing after successful 
execution of the device except that the signal that is propa 
gated to the next device is a always a nil signal. Likewise, 
the sequence input behaves like any other data input with 
one exception. When connected it must be updated (any data 
will do, even nil) along with any other data inputs before the 

Sequence Output 
Sequence Input 

Fig. 6. While B and C both need the data from A, the sequence 
connection between B and C will cause C to execute after B. 

device will be allowed to execute, but unlike other data in 
puts, connection is not required. Thus any time it is required 
that A must execute before B where no other data dependen 
cies exist between the two devices, it is sufficient to connect 
the sequence output of A to the sequence input of B. 

For users who have already been introduced to program 
ming in third-generation languages such as Pascal, C, or 
BASIC this can require a paradigm shift. Experience with 
such users has shown that they are often preoccupied with 
sequencing (since 3GLs almost universally use control-flow 
paradigms) and have a difficult time at first believing that 
the data constraints represented by the lines that intercon 
nect the devices are sufficient to define a robust sequence of 
execution. It is only after using the system for a time that 
they are weaned away from this need to sequence each and 
every device explicitly and begin to feel comfortable with 
the dataflow paradigm. 

Contexts 
Several types of devices are supplied as primitives with HP 
VEE, including those used for flow control, data entry and 
display, general data management, mathematical expressions, 
device, file, and interprocess I/O, virtual signal sources, and 
others. There is also a mechanism that allows users to con 
struct special devices with their own panels and a specific 
functional capability. This device is known as a UserObject 
and is essentially a graphical subprogram. 

UserObjects (Fig. 7) encapsulate networks of other devices 
(including other UserObjects) and have their own input/output 
pins and custom panel displays. Viewed as a single collec 
tive object with its own panel, each UserObject operates un 
der the same rules as any primitive device: all data inputs 
must be updated before the UserObject will execute its inter 
nal subnet. Each UserObject will contain one or more threads, 
which in in parallel at run time. In addition, threads in 
subcontexts (hierarchically nested contexts) may well be 

Fig. into a UserObject encapsulates a subnetwork of other objects into a 
single larger object with its own inputs and outputs. 
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running in parallel with their host threads in their parent 
contexts. 

UserObjects can be secured such that the user of the de\ice 
can access only the panel and not the internals. In this form 
the UserObject is almost indistinguishable from any primitive 
device. This capability allows developers to create arbitrary 
devices that can be archived in a libran,- for later access by 
users, who can treat these devices as true primitives in their 
application. 

Threads 
Devices that are connected to each other within the same 
context form a single thread of execution. One of the in 
herent advantages of dataflow programming is the ability to 
support multiple independent threads of execution with 
relative ease (see Fig. 8). This becomes particularly useful 
when interacting with the rest of the world, since indepen 
dent monitoring operations ("Has that message arrived 
yet?") can proceed in parallel with related operations. In 
typical 3GLs such operations require elaborate schemes for 
enabling interrupts and related interrupt service routines. 
Most who have dealt with such code as inline text can attest 
to the difficulty of maintaining that code because of the diffi 
culty of easily recreating the relationship between parallel 
operations once the code has been written. 

Several devices were developed especially for thread-related 
activities. One of these is the Exit Thread device, which termi 
nates all execution for devices on that same thread when 
encountered. Another is the Exit UserObject device, which ter 
minates all execution on all threads within the context in 
which it is encountered. 

Certain devices have the ability to elevate a thread's priority 
above the base level to guarantee that thread all execution 
cycles until completion. One such device is the Wait For SRQ 
device (SRQ = service request), which watches a specified 
hardware I/O bus in anticipation of a service request. If and 
when such a request is detected, this device automatically 
elevates the priority of the subthread attached to its output 
so that all devices connected to that subthread will execute 
before devices on any other thread (within this context or 
any other context) until that subthread completes. 

Virtual Context 

Fig. 8. Any context (e.g., a UserObject) can contain one or more 
threads, each of which executes independently of all others within 
that context. 

Fig. 9. Objects A and B and the XV display will execute 10 times 
each at side) time as the iterator fires its only data output (right side) 
10 times before firing its sequence output (bottom). The data from 
the output of X is reused for the last 9 of the 10 executions of A 
(active data rule). 

Although it is not specifically thread related, a similar capa 
bility exists for exception service. At the time an exception 
is raised (e.g., an error occurs), all other devices on all other 
threads are suspended until an exception handler is found 
(discussed later). 

Propagation: Flow of Execution 
From an external point of view, the determination of which 
devices can execute is a simple problem of finding out 
which devices have had all of their inputs updated. From an 
internal point of view, the problem is a bit more difficult. To 
prevent infinite feedback the general rule for dataflow pro 
grams is that each device can execute only once per activa 
tion of the context in which the device resides. On the other 
hand, it was felt from our earliest prototypes that having 
iteration occur within some subgroup of devices in a con 
text was superior to dropping down into a subcontext multi 
ple times to accomplish the same thing, especially for 
nested iteration. 

Thus we were faced with the problem of allowing groups of 
devices to execute multiple times within a single activation 
of a context. Identification of these devices could only occur 
at run time as they appeared on the subthread hosted by the 
primary output of an iterator. To deal with this we devel 
oped the virtual context, which is defined not by the user 
but by the system (see Fig. 9). At run time, the devices that 
are executed on the subthread hosted by an iterator are re 
membered. Then, just before the next firing of the iterator 
(since an iterator generally fires its output more than once 
for each execution of that iterator), the devices in this 
virtual context are selectively deactivated separately from 
the other devices in the context. This allows them to be re- 
executed when the iterator fires again by the normal rules of 
propagation. 

One other side effect of such iteration is that any data being 
supplied to a device within the virtual context by a device 
that is outside that virtual context is going to be delivered 
only once to the device within the virtual context. Thus new 
data is supplied to the inputs as required on the first itera 
tion, but on all subsequent iterations no new data arrives. 
One could solve this by using a special intermediary 
Sample&Hold device, but a simple extension to the rules of 
propagation turned out to be much easier. The extension, 
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Fig. output The special error output will fire in lieu of the data output if 
any error is encountered while evaluating the formula. The value 
posted at the error output is the error code number. This allows the 
user to decide how to handle the situation. 

known as the "active data rule," says that data from any ac 
tive but of a device that is currently active (executed, but 
not yet deactivated) can be reused. This has essentially the 
same effect as the Sample&Hold but is much less error-prone. 

The goal in all of this is to create a scheme of execution that 
does not require the user to specify a sequence of execution 
with explicit device-by-device triggering as is common in the 
world of digital design. In addition, we wanted execution to 
proceed as if the entire network were running on a multipro 
cessor architecture with true parallelism. On a typical uni 
processor machine only one primitive device is actually 
drawing cycles from the processor at any one instant, but 
the overall effect is as if all devices both within the same con 
text level and across other levels of the network hierarchy 
are running in parallel. 

Asynchronous Operations 
For some devices we found a need to invoke certain opera 
tions programmatically that were peripheral to the general 
operation of the device, such as AutoScale or Clear for an XY 
graph. While the primary function of the graph is to con 
struct a graph from the data present at the synchronous data 
inputs, operations such as AutoScale could happen at any 
time. A different class of inputs that were not incorporated 
into the general scheme of propagation was needed to initi 
ate these asynchronous operations. Thus we developed the 
control input, which when updated at run time will perform 
its assigned function within the associated device regardless 
of the state of any other input on the device. 

Exception Management 
Exception (error) management could have been approached 
from a number of different points of view, but it proved most 
effective to implement a strategy based on an optional out 
put that fires if and only if an untrapped exception is raised 
from within the scope of that device (Fig. 10). For primitive 
devices this allows the user to trap common errors such as 
division by zero and deal with possibly errant input data 
accordingly. In each case a number (an error code) is fired 
from the error pin and can be used by the ensuing devices to 
determine just which error has occurred. If the decision is 
not to handle the error locally, the error can be propagated 
upward with the Escape device, either as the same error that 
could not be handled locally or as a new user-defined code 
and message text, which may be more informative to the 
handler that eventually owns the exception. 

Hierarchical exception handling is possible because an error 
pin can be added to any context object (UserObject) to trap 
errors that have occurred within its scope and that have not 
been serviced by any other interior handler. If the exception 
pops all the way to the root context without being serviced, 
it generates a dialog box informing the user of the condition 
and stops execution of the model. To enable the user to lo 
cate the exception source, the entire chain of nested devices 
is highlighted with a red outline from the root context down 
to the primitive device that last raised the exception. 
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A Performance Monitoring System for 
Digital Telecommunications Networks 
This 2, collects CCITT G.821 performance statistics on CEPT 2, 8, 34, 
and 140-Mbit/s data streams and alarm data on network elements. A 
demux data permits monitoring of tributary streams within a data 
stream. Data is collected nonintrusively by peripheral units, which are 
modular VXIbus systems. 

by Giovanni Nieddu, Fernando M. Secco, and Alberto Vallerini 

The HP Model E3560 digital performance monitoring and 
remote test system is designed for surveillance of the quality 
of a digital telecommunications network and for collecting 
alarms from network elements, following the guidelines of 
CCITT Recommendation G.821. The HP E3560 provides the 
customer with well-defined performance parameters that 
tell how the network is doing on a statistical basis, and 
whether a failure has occurred in a network element. 

The actual network monitoring is performed by devices 
called peripheral units, which continuously monitor the 
telecom links nonintrusively. The peripheral units scan the 
PCM streams at the four main bit rates in the European 
(CEPT) hierarchy (2, 8, 34, and 140 Mbits/s), looking for 
alarms and binary errors, and computing the G.821 
performance parameters. 

Data produced by the peripheral units is collected by a first- 
level processor, an HP 9000 Series 400 workstation, which 
stores the data in a relational database. The first-level proces 
sor also provides for configuration of the peripheral devices 
and presents the retrieved data and alarms to the user. 

Digital Network Quality 
Digital networks have had and are still having spectacular 
growth, constantly adding newer and more sophisticated ser 
vices to customers. In many European countries, it is now 
possible for a customer to lease 2-Mbit/s digital lines to build 
a private network. It is very common to lease 64-kbit/s perma 
nent or packet circuits. In the most industrialized countries, 
practically every large company has its own private network. 

Network customers demand and pay for a specified quality 
of service. The CCITT in its Recommendation G.821 starts 
with the definition of network quality parameters (see defi 
nitions below) and gives end-to-end quality objectives (see 
Table I) for a 27,500-km, 64-kbifs circuit called the Hypotheti 
cal Reference Connection (HRX). Fig.l shows the functional 
representation of the HRX. 

The following quality parameters are defined in G.821: 
Errored second (ES): a second with at least one error 
Severely errored second (SES): a second with a bit error 
rate (BER) worse than 10'3 

27,500 km 

1,250km 25,000 km 1,250km 

Fig. 1. defined representation of the Hypothetical Reference Connection (HRX) defined in CCITT Recommendation G.821. LE = local 
exchange. center. = primary center. SC = secondary center. TC = tertiary center. ISC = international switching center. 
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> Degraded minute (DM): a collection of 60 non-SES with a 
BER worse than 10'6 

> Unavailable seconds (UAS): a period that starts when at 
least 10 consecutive SES are counted and ends when 10 
consecutive non-SES are seen. UAS includes the first 10 
SES and excludes the last 10 non-SES. 

CCITT Recommendation M.550 (M-series recommendations 
are addressed to service management) tells service provid 
ers how the objectives of Table I are to be allocated inside 
the transmission network. The end-to-end objectives of 
Table I are partitioned according to the quality classification 
of the circuit (high, medium, or local grade). Table II gives 
the percentage of the objectives that must be allocated for 
each circuit classification. For the local-grade and medium- 
grade circuit classifications, the allocated percentage of the 
objectives is independent of the circuit length, while for high- 
grade must the allocated percentage (40% in Table II) must 
be scaled according to the length of the circuit. For example, 
for a high-grade circuit 2,500 km long, the allocated percent 
age of the objectives will be 40 x (2,500/25,000) = 4%. Annex 
D of G.821 suggests a method for computing all parameters 
originally defined at 64 kbits/s for higher bit rates, by 
measuring errors at the higher rates. 

T a b l e  I  
E n d - t o - E n d  Q u a l i t y  O b j e c t i v e s  

Q u a l i t y  P a r a m e t e r s  O b j e c t i v e  
( M a x i m u m  P e r c e n t a g e  

o f  T ime)  

D e g r a d e d  M i n u t e s  ( D M )  1 0  

S e v e r e l y  E r r o r e d  S e c o n d s  ( S E S )  0 . 2  

E r r o r e d  S e c o n d s  ( E S )  8  

T a b l e  I I  
A l l o c a t i o n  o f  O b j e c t i v e s  

H R X  C i r c u i t  Q u a l i t y  C l a s s i f i c a t i o n  P e r c e n t a g e  o f  
O b j e c t i v e  

15 

15 

40 

Local (each end) 

Medium (each end) 

High 

As an example of the allocation of objectives, suppose that 
the path whose quality parameters are to be measured starts 
at a local exchange, ends at a secondary center, and passes 
through a high-grade circuit 1,500 km long. This means that 
the sum of a local-grade circuit, two medium-grade circuits, 
and a high-grade circuit must be allocated. According to 
Table II, the allocated percentage is 15 + 2 x 15 + 40 x 
(1,500/25,000) = 47.4%. This leads to the following path ob 
jectives (RPO stands for reference performance objective): 

RPO(DM) = 10% x 47.4% = 4.740% 
RPO(ES) = 8% x 47.4% = 3.792% 
RPO(SES) = 0.2% x 47.4% = 0.095%. 

TMN Architecture 
The architecture of the HP E3560 follows as closely as 
possible the architecture proposed in Recommendation 
M.30 of the CCITT Blue Book Series. M.30, which is better 

known as TMN (Telecommunications Management Network), 
establishes the building blocks and data links that should be 
employed in the design of a network whose aim is the man 
agement of the telecomm network. In Recommendation 
M.30, four blocks are identified (see Fig. 2): 
Network elements (NE) represent the devices that make up 
the telecom network. It is assumed that an NE is "intelli 
gent" enough to have the possibility of generating and trans 
mitting some kind of information useful for network man 
agement. All NEs produce for external use some sort of 
internal alarms, both urgent and nonurgent. These are rep 
resentative of internal faults. Urgent alarms indicate a need 
for immediate maintenance. Alarms can be displayed in a 
centralized operation and maintenance center to help net 
work personnel understand where faults have occurred and 
to minimize the need for manned offices. 
Operations systems (OS) are the blocks where the network 
management takes place. They can be thought of as com 
puters that receive a large amount of data from the network 
and provide for its elaboration and for the generation of 
data useful for management purposes. 
Mediation devices (MD) provide the links between the NEs 
and the OSs. Their main functions are protocol conversion, 
information conversion and storage, data buffering, and fil 
tering. These blocks can be absent if the NEs are powerful 
enough to manage the data link with the OSs. 

Recommendation M.30 has recently been renamed M.3010. 

Fig. 2. Simplified physical architecture of the Telecommunications 
Management Network (TMN) specified in CCITT Recommendation 
M.30 (now M.3010). NE = network element. OS = operations sys 
tems. MD = mediation devices. WS = workstations. DCN = digital 
communications network. LCN = local communications network. QA 
= Q adapter, a protocol converter. Qx and Q3 are types of data link 
protocol stacks. F, X, and M are different types of interfaces. 
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RS-485Bus 

RS-485 Bus 
Remote Site B 

Fig. 3. HP E3560 digital performance monitoring system architec 
ture. PU = peripheral unit. M = modem. DCN = digital communica 
tions network. The HP E3560 architecture is modeled on the TMN 
architecture shown in Fig. 2. The first-level processor is an HP 9000 
Series 400 workstation. 

> Workstations (WS) display data elaborated by the OSs in a 
form understandable by humans. 

These blocks and the functions they perform must not nec 
essarily be thought of as separate entities. An NE can have 
functions typical of an MD, and an MD can have functions 
typical of an OS or a WS. 

HP E3560 Architecture 
In the HP E3560 architecture, which is shown in Fig. 3, the 
peripheral units play the role of NEs. They are not actually 
part of the telecomm network, since they don't provide for 
the transfer of voice or data, but nonetheless they are a 
source of management information. 

The first-level processor acts as a mediation device (MD) 
with OS functions. It collects data from the peripheral units 
and stores it, and it provides basic processing aimed at the 
generation of performance alarms following CCITT Recom 
mendation M.550. Finally, it is an entry point into the system 
through the window-based human interface. 

The links between the various blocks of the architecture are 
particular OSI stacks named Qx and Q3. Qx is the link used 
to transfer data between the peripheral units and the first- 
level processor. Q3 is a complete seven-layer ISO (Interna 
tional Standards Organization) OSI (Open Systems Intercon 
nection) stack, based on X.25 or Ethernet protocol in its 

three lower layers. Q3 is defined by CCITT Recommendations 
Q.961 and Q.962. 

Qx. defined in Recommendation G.773. is also called the 
"short stack," since not all of the OSI layers are present. Two 
profiles or stack configurations, called Al and A2, have been 
proposed by the CCITT. Both are missing OSI layers 4. 5. and 
6. which are replaced by some mapping functions that act as 
a sort of "short circuit" between layer 7 service requests and 
layer 3 services. Both stacks have the same layer 7 compo 
nents definition: CMISE (ISO 9595/9596. CCITT X.710/711), 
ROSE (CCITT X.219-X.229), and ACSE (CCITT X.217-X.227). 
The mapping functions provide some basic layer 6 services. 
such as the encoding and decoding functions, according to 
the basic encoding rules of CCITT X.209. 

The two profiles differ in layers 1, 2, and 3, as shown in Fig. 4. 
Profile Al, which is used in the HP E3560, uses RS-485 as 
the physical layer, HDLC-NRM as layer 2, and ISO 8473 as 
layer 3 (of the possible three subsets of ISO 8473, the HP 
E3560 implements the so-called "NULL IP"). Profile A2 is 
based on an Ethernet link. 

In the HP E3560, Qx/Al constitutes the data link between the 
first-level processor and the peripheral units, or in TMN ter 
minology, Qx/Al is the LCN (local communication network). 
Since the network topology is point-to-multipoint, the rela 
tionship between the first-level processor and the peripheral 
units is of a master-slave type. The peripheral units are con 
tinuously polled by the first-level processor, which acts as a 
primary station. Only when a peripheral unit receives the 
polling request (or the RR frame in HDLC terminology) is it 
allowed to send one packet of data to the first-level proces 
sor. Packet length is limited to 256 bytes (one octet in the 
HDLC frame) and packet segmentation is not allowed. 

Level 7 

Level 6 

Level 5 

Level 4 

Level 3 

Level 2 

Level 1 

Network Layer  

I S O  8 4 7 3  I S 0 8 4 7 3 / A D 3  

Data Link Layer 

ISO 3309  ISO 7809  ISO 4335  

Profile A1 

Data Link Layer 

ISO 8802.2+DAD2 ISO 8802.3 

Physical Layer 

Not Specif ied 

Profile A2 

Fig. 4. The Qx data link protocol stack as defined in CCITT Recom 
mendation G.773. Two profiles, Al and A2, are permitted. Profile Al, 
which is used in the HP E3560, uses RS-485 as the physical layer. 
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The number of peripheral units that can be handled by a 
first-level processor is limited by the addressing capability 
of the HDLC protocol, which, as stated in G.773, is 254. One 
byte is used to address a secondary station, and address 
values OOh and FFh are reserved for the "no station" and 
"all stations (broadcast)" addresses. On the other hand, the 
number of peripheral units that can be physically connected 
to a first-level processor is at most 30 because of charge 
limitations of the RS-485 bus. 

Remote Links 
In developing the HP E3560, another protocol limitation had 
to be overcome: as implied by its name, the LCN cannot 
span more than a few hundred meters, so the LCN is useless 
for connecting remote peripherals to the first-level proces 
sor. For cost reasons, it is unacceptable to place a first-level 
processor at each site where a peripheral unit is located, so 
a solution involving modems and leased lines had to be 
found. 

The HP E3560 solution for remote links takes the form of 
two additional peripheral unit boards: the communication 
board and the communication controller board. The commu 
nication controller can drive up to eight communication 
boards, each of which has two RS-232 ports capable of driv 
ing an external modem. One of the communication boards is 
connected to the RS-485 bus. Installed in a local peripheral 
unit, a set of these boards acts as a router between the main 
bus and the remote peripheral units, as shown in Fig. 3. One 
router section can drive up to 16 remote peripheral units or 
up to 16 remote addresses. The distribution of the addresses 
among the RS-232 ports is customer-defined, ranging from 
16 addresses driven by a single port (using only one commu 
nication board) to 16 addresses, each driven by a single port 
(using eight communication boards). 

At the remote site, the peripheral unit physically connected 
to the modem (called the remote master peripheral unit) 
acts as a repeater, locally regenerating the RS-485 bus. 
Throughout the remote links, the protocol from layer 2 up is 
still Qx, so what we have obtained is the extension of the 
protocol at the expense of redefining the physical layer for 
only part of the transmission path. 

First-Level Processor Interface 
On the first-level processor side of the RS-485 bus, an 
HP RTI (real-time interface) card interfaces the processor to 
the peripheral units. This board interfaces to the I/O bus of 
the HP 9000 Series 400 workstation and accepts inputs from 
SBX boards purchased from HP or other vendors, t No out 
put interface is provided. From a protocol point of view, the 
first-level processor's Qx stack is split into two parts: layers 
1 and 2 are implemented in the RTI card, while the remain 
ing part runs in the HP-UX environment. In this way, the 
stack section most affected by typical real-time problems 
runs on a dedicated processor with a real-time multitasking 
kernel (the HP RTI card uses the pSOS+â„¢ operating sys 
tem). Communication between the two parts is handled by 
the HP-UX device driver mechanism. 

t SBX SBX Bus extension] is an industry-standard bus. The SBX boards used in the HP 
E3560 fit into the SBX connector on the HP RTI card and have serial ports for RS-485 commu 
nication. The HP 94185A 2-channel serial SBX card is used in the HP E3560 

First-Level Processor 
The first-level processor's main task is the collection of data 
produced by the monitoring activities of the peripheral units. 
This data, divided into the two classes of performance data 
and alarm data, is processed and stored in a relational SQL 
database for further analysis and historical tracing. Alarms 
are displayed on the screen to alert maintenance personnel. 
To help the operator in problem solving, other software is 
provided for reporting and fault localization exploiting the 
demux capabilities available in the peripheral units. The 
first-level processor can have a Q3 connection to a second- 
level processor or an existing OS. 

The other important first-level processor function is periph 
eral unit management. Through a simple-to-use human inter 
face based on X Windows, it is possible to set up the boards 
in the peripheral units and selectively start and stop the 
monitoring operations. 

In addition to the normal software environment provided by 
HP 9000 Series 400 workstations (HP-UX and X Windows), 
the first-level processor's software is based on the HP Open- 
View platform. 1 The services offered by HP OpenView are 
exploited both from the programmer's side (easy and well- 
defined communication between tasks, object-oriented ap 
proach, etc.) and from the user's side (object management 
through the use of maps). 

Peripheral Units 
The HP E3560 peripheral unit can be considered a network 
element (NE) whose main purpose is to collect status and 
network quality parameters from other NEs. Alarms are 
collected directly and indirectly from the NEs and sent to 
the first-level processor to be processed. Quality parameters 
are collected indirectly from the NEs, processed according 
to CCITT G.821, and sent to the first-level processor. 

The peripheral unit is designed to be inserted both function 
ally and structurally into the telecomm environment, specifi 
cally in the digital transmission area. The digital transmis 
sion area is the part of a telecomm system that deals with 
digital information transport by means of equipment such as 
multiplexers, line terminals, regenerators, add/drop multi 
plexers, cross connections, digital radio relays, and so on. 
This area and the digital switching area are the building 
blocks of a digital network. It is reasonable to say that most 
of today's telecomm equipment is digital and much of it uses 
fiber optic media to transport signals all over the world. 

Peripheral Unit Description 
The peripheral unit is built to solve the problem of alarm 
collection and analysis for a large variety of alarm types. 
Different physical interfaces are available, including current 
loop, voltage sensing, and open or closed contact sensing. 

Data streams from 2 Mbits/s up to 140 Mbits/s can be ana 
lyzed both intrusively and nonintrusively. This is achieved 
by means of high-impedance probes connected to the data 
streams at protected monitoring points according to CCITT 
G.772, or by taking the signal directly from standard moni 
toring points that are sometimes already present in the net 
work central office. Typical network alarms collected include 
loss of signal, AIS (alarm indication signal), loss of frame 
alignment, and so on. It is also possible to count events 
coming, for example, from radio relay equipment that flags 
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block parity errors or forward error correction (FEC) code 
interventions. These events are also processed and used to 
compute the G.821 parameters. 

The peripheral unit is modular for flexible configuration. 
Many different types of boards can be mixed in the periph 
eral unit cardcage according to the needs of the application. 
The boards and backplane conform to the VXIbus standard.2 
and each board is a complete instrument. Thus, expanding 
existing measurement capabilities is simply a matter of du 
plicating existing boards, while adding new functionalities is 
a matter of installing new boards and updating the software. 
Up to ten application boards and up to three communication 
controller boards can be installed in each peripheral unit. 
The peripheral unit can easily be installed in a central office 
thanks to its standard 19-inch width and relatively small 
depth (11.8 in). There are two power supply types, one for 
de-powered central offices (^48V, -60V) and one for ac- 
powered offices (lOOVac, 240Vac). 

The peripheral units are interconnected by an RS-485 bus, 
which is the physical layer of the TMN Qx protocol. Up to 
30 peripheral units can be physically inserted in the same 
RS-485 bus. This bus is shared by the first-level processor, 
which is the primary station and polls the peripheral units 
(secondary stations). It is possible, using the dedicated com 
munication boards described earlier, to accommodate more 
than 30 peripheral units. The same boards can also be used 
to connect remote peripheral units through modems on 
leased lines or service channels. 

Fig. 5 gives an overview of the cardcage. The cardcage can 
house up to 15 B-size VXIbus or VMEbus boards. Thirteen 
slots have all of the VXIbus lines and form a VXIbus subsys 
tem, while the last two slots have only the VMEbus lines. 
According to the VXIbus standard, the first slot is for the 
slot 0 board, which together with the processor board is the 
resource manager of the cardcage. Slot 0 has four peripheral 
unit communication ports called Jl, J2, J3, and J4. Jl is 
RS-485, J3 is either RS-232 or RS-485, J4 is RS-232, and J2 is 

VME Boards  

VXI Boards 

Cable 
M a n a g e m e n t  

System LEDs 
O n / O f f  S w i t c h  S y s t e m  F a n s  

Fig. 5. HP Iv'i.r>60 peripheral unit cardcage organization. 

a passive connector that can be paralleled with Jl or J3 and 
acts as a tee connector for the communication bus. A local 
maintenance terminal can be connected to J4 for local 
management and maintenance. 

A requirement for the cardcage is that not only the boards, 
but also the power supply and the fans, must be easily re 
placed. This is considered important for a telecomm NE 
because it is common for all of the parts of a telecomm sys 
tem to be easy replaceable. Another important feature of the 
cardcage is cable management. In some configurations more 
than 80 coaxial cables must be managed in the cardcage. 

The power supply provides the following resources: +5V at 
20A, +12V at 3A, -12V at 3A, -5.2V at 10A, and -2V at 6A. It 
is also responsible for generating the VXIbus reset and 
powerfail signals, and it can maintain its specified output 
capacity for up to 20 ms of power line failure, permitting the 
system to work without interruptions. 

The peripheral unit meets the requirements of IEC 750 re 
garding safety, CISPR 22 Class B for radiated emissions, and 
HP environmental specifications (ETM Cl "Office"). 

Peripheral Unit Boards 
The system is organized to house VXIbus or VMEbus boards. 
All of the application boards are VXIbus register-based, B-size 
boards. They use a common bus interface unit implemented 
in an ASIC (application-specific integrated circuit). Every 
board can run a self-test to determine its status according to 
VXIbus is A useful feature is self-configuration, which is 
implemented using the VXIbus M ODI D lines and the standard 
registers provided in the VXIbus A16 address space. Every 
board has its own address and a model code that represents 
its functionality. This allows the processor that controls the 
peripheral unit to determine the cardcage configuration and 
any board's status automatically. 

The system boards are the slot 0 board and the processor 
board. The slot 0 board is required by the VXIbus standard 
to provide common resources to VXIbus subsystem slots 1 
through 12. Slot 0 also provides the system trigger, which is 
used to synchronize the measurements, and basic system 
resources such as the system clock and the bus arbiter. The 
processor board is a VMEbus B-size board and is responsi 
ble for raw data collection from the application boards. 
Alarms are stored in local memory waiting to be polled by 
the first-level processor, while the raw data is processed to 
obtain the G.821 parameters which are then stored until 
collected by the first-level processor. Up to 80 digital 
streams (this is the case for ten 2-Mbit/s boards), or up to 
160 alarm points (this is the case for ten alarm boards) can 
be processed in a peripheral unit. In the case of a loss of 
communications between the first-level processor and the 
peripheral units, all of the G.821 records can be stored for 
up to 12 hours; each monitoring point is allocated a buffer 
for 50 records, a record consisting of type of alarm, start 
time, and stop time. The processor software can be updated 
using a DOS-based personal computer connected to the J4 
RS-232 connector. 

The communication controller and communication boards 
are used to extend the bus to remote sites. Any communica 
tion board can drive two modems at a maximum speed of 
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9600 bits/s. The communication controller is basically a pro 
cessor board with specialized communication software and 
can control up to 16 remote peripheral units. 

HP E3560 application-specific boards include a 140-Mbit/s 
monitor board, a 34-Mbit/s monitor board, an 8-Mbit/s moni 
tor board, a 2-Mbit/s monitor board, a counter board, and an 
alarm board. The monitor boards can recover a CCITT G.703 
signal. They can analyze the standard CCITT G.702 hierar 
chy starting with 2 Mbits/s (2048 kbits/s) or a pseudorandom 
(PRBS) signal according to CCITT O.151. The 2-Mbit/s moni 
tor board analyzes up to eight independent data streams. 
Measurements can be made using code violations, frame 
alignment errors, CRC-4 errors, or PRBS errors. The 8-Mbit/s, 
34-Mbit/s, and 140-Mbit/s monitor boards can analyze a 
single data stream. They measure code violation errors, 
frame alignment errors, or PRBS errors. The counter board 
can count events at a maximum speed of 1 MHz. Its eight 
independent inputs can accept signals from -5V to +5V and 
its maximum sensitivity is 100 mV. The alarm board has 16 
independent inputs. When an input is set for high imped 
ance, it can collect events from -60V to +60V, and maximum 
sensitivity is IV. It can also be set to measure open or closed 
contacts or current loops. 

Any of the monitor boards can demultiplex a tributary data 
stream inside the data stream being processed and send it to 
the VXIbus local bus lines. Any board in the system can sink 
and/or bypass these lines to the next board. This means that 
a group of boards, say one 34-Mbit/s, one 8-Mbit/s, and one 
2-Mbit/s, can act as shared demultiplexers for the other 
monitoring boards, which can send these boards their 
signals to be demultiplexed. 

Two special application boards are also available. These are 
basically the standard 8-Mbit/s and 34-Mbit/s monitor boards 
without the G.703 interface. They perform the demux func 
tion while analyzing the streams coming from the local bus. 
This can be economically convenient when a demux feature 
is shared among many monitored streams. 

Another common resource is the scanner board, which 
contains two 4: 1 analog multiplexers. The high bandwidth 
of this board allows the multiplexing of signals up to 140 
Mbits/s. Up to three multiplexers can be cascaded. A scan 
ner board can be used to scan a group of digital data 
streams, connecting one at a time to a monitor board. This 
can lower the cost per data stream but has the disadvantage 
that no data stream is monitored continuously. 

HP OpenView Windows 
(Operator Interface) 

Fig. on network software. software architecture. The software is based on the HP OpenView network management software. 
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HP E3560 Software 
The HP E3560 software is based on HP Open View.1 as 
shown in Fig. 6. The applications and managers that form 
the software environment are divided into four packages: 

â€¢ Base software 
â€¢ Communication software 
â€¢ Presentation software 
â€¢ Threshold manager software. 

Base and Communication Software 
The base software lets the user manage the peripheral units 
by acting on the manager map (Fig. 7). This is actually a set 
of maps, each exposing a particular level of detail in the 
system architecture, from a high-level view (peripheral unit 
level) down to the board level and the individual monitoring 
channels inside the boards. Another set of maps called the 
user map is available for surveillance (see "Presentation 
Software," page 97). 

By selecting an object with the mouse and using the ap 
propriate menus, the system manager can set up the periph 
eral units and start and stop the monitoring activities. This 
feature is available both on the peripheral unit level (a sort 
of big switch that turns on and off the monitoring capabili 
ties of an entire peripheral unit) and on the single-channel 
level. Thus it is possible to enable or disable the monitoring 
of a single data stream or alarm input. 

The part of the user interface not directly handled by HP 
OpenView is managed by the ConfigA application, which 
translates user requests into the appropriate primitives and 
posts them to the HP OpenView communication infrastruc 
ture to be sent outside the workstation using the Qx proto 
cols. Since this is not one of HP OpenView's native stacks, 
the task is performed by a proxy manager (which is part of 
the communication software). The proxy manager takes 

care of the translation between the HP OpenView primitives 
and the Qx primitives. Furthermore, the proxy manager 
manages all associations with the peripheral units and en 
sures the correct addressing of each outgoing request. The 
proxy manager returns incoming responses to the applica 
tion or manager waiting for them, and sends event report 
indications to the event management server (see below). 

The proxy manager also manages data link faults. The OSI 
layer 2 protocol continuously polls the peripheral units and 
can detect any disconnection resulting from line breakage, 
peripheral unit failure, or some other cause. In this case, it 
issues a DL-DISCONNECT request towards the OSI stack's up 
per layers. The layer 7 service element responsible for asso 
ciations forwards this request to the proxy manager as a 
PROVIDER-ABORT indication. The proxy manager translates 
this into a format understandable by HP OpenView by issu 
ing a particular event report indication to the fault manager, 
a part of the base software not shown in Fig. 6, which signals 
the fault by changing the object's color on the network map. 

The fault manager is one of three managers that handle in 
coming events. The other two are the alarm manager and 
the statistics manager, which receive the alarms and the 
G.821 data, respectively, from the peripheral units and store 
it in the database. These managers use the services of the 
event management server. Each manager creates a filter 
which is used by the event management server to route the 
various events to the managers that are waiting for them. 

Since data handled by these managers requires a large 
amount of storage (customers typically ask for 1 to 2 years' 
storage), it was deemed better not to use the database 
embedded in HP OpenView, but to provide instead an SQL 
database, which is also useful for report generation. Con 
figuration information is also stored in the SQL database. 

Fig. 7. Ill' IviufiO manager map 
Mop level). 
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It was a design choice that all information pertaining to the 
peripheral unit is kept in the peripheral unit itself. The first- 
level the stores only logical information related to the 
peripheral unit (e.g., the data streams' names and creation 
dates) that doesn't correspond to any physical attribute of 
the device. 

The alarm manager also changes the status and therefore 
the map color of the affected object. The HP E3560 uses the 
four colors allowed by HP OpenView. Each color is associ 
ated with a particular status of the affected object. The four 
basic status conditions are: 

â€¢ Unknown. This status means that the object has not been 
created yet. It is known by the first-level processor, but not 
by the peripheral unit that contains it. 

â€¢ Normal. The object gets this status after a successful cre 
ation, that is, after a create request has been issued to the 
peripheral unit and has been acknowledged by it. 

1 Warning. The object gets this status when an alarm indica 
tion has been received. When the alarm is turned off, the 
object's status changes back to normal. 

â€¢ Critical. The object gets this status when a data link fault 
occurs, that is, when it is no longer possible for the first- 
level processor to act upon the object. 

Database Management 
Database management is part of the base software. It is han 
dled by the ConfigA application and the alarm and statistics 
managers. The database structures consist of three main 
tables: 
Configuration tables store data regarding peripheral units 
and monitored data streams. As mentioned above, only log 
ical parameters are stored in the first-level processor, such 
as the data stream name, its creation and disconnection 
dates, and the quality parameters of the stream (see 
"Threshold Manager Software" below). 

1 Alarm tables store alarm source, type, begin time, and end 
time. 

i Performance tables store performance data coming from 
the peripheral unit. Each row of the table stores a record 
containing the error counts (ES, SES, DM, UAS) and three 
bit error rate indicators computed by the peripheral unit in 
slightly different ways. 

The way in which performance data is managed is critical to 
the operation of the system. Elementary data coming from 
the peripheral units occupies a lot of disk space. With some 
hundred streams being monitored, disk space can be filled 
in a few months. As a compromise between data storage and 
disk space, an aggregation technique was developed to 
maintain data for a longer period at the price of reduced 
data granularity. 

The elementary records are kept in the database for a period 
of time Tl (expressed in days), which can be defined by the 
user during the installation of the system. Each day, a back 
ground process combines the elementary records into a 
single daily record. For G.821 parameters (ES, SES, etc.) 
this is done by simply summing all of the stored values. For 
BER parameters, it is done by averaging all of the stored 
values. After Tl days, the older elementary records are re 
moved from the database. Storing the daily records before 
time Tl speeds up daily report generation at the expense of 
a small amount of extra storage. 

The advantage of this operation to the user is a reduction of 
the disk space needed for the database. The disadvantage 
lies in the loss of resolution resulting from the aggregation 
process: the older data cannot be viewed with 15-minute 
resolution, but only with 1-day resolution. 

The daily records are kept in the database for a period of 
time T2. At the end of each month, a second aggregation 

D i a g n o s e  C o n t r o l  C o n f i a  

Fig. 8. Hourly G.821 statistical 
report. ES, SES, DM, UAS, and 
BER are defined on page 89. EFS 
= error-free second. LES = local 
errored second. AV_ER and 
AT_ER are bit error rates (BER) 
computed in different ways. 
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takes place, collapsing the daily records of the oldest month 
into a single monthly record. After T2 months, the oldest 
daily records are removed from the database. 

Finally, after a period of time T3. the oldest records are 
deleted from the database. 

Tl. T2. and T3 can be defined during system installation, but 
it must be realized that their values have different impacts 
on disk space. Elementary records have the highest storage 
requirements, while daily and monthly records play only a 
secondary role. Therefore, a higher value of Tl means re 
ports with higher resolution for a longer time, but it also 
means more disk space and cost. 

Presentat ion Software 
The presentation software is implemented using the ReportA 
application. Reports are divided into two families: statistical 
and alarm reports, which show performance and alarm data, 
respectively. Performance data can be displayed in three 
formats: hourly (Figs. 8 and 9), daily (Fig. 10), and monthly. 
The hourly display shows data as it is stored in the database 
(elementary data). The daily and monthly displays show 
aggregated data. Various reporting options let the user make 
reports on a single data stream or on a group of data 
streams, showing absolute or percentage values. The user 
can define thresholds for ES, SES, and DM and have the 
report flag all records having one or more values over a 
threshold. Optionally, the user can ask for a report displaying 
only values that exceed system or user-defined thresholds. 

The ReportA application user interface makes extensive use 
of X Window panels and HP OpenView maps. The user's 
selections are translated into SQL queries and the results are 
formatted in a file and displayed. The file can also be printed. 
The HP E3560 design philosophy allows system users, who 
perform reporting activities, to make use of user maps. 

These contain only objects such as data streams or alarm 
inputs and are not cluttered with configuration objects 
(peripheral units, boards, and so on), which are not pertinent 
to the surveillance task. 

Fig. 1 1 shows a typical alarm report. 

Threshold Manager Software 
The threshold manager software has the purpose of long- 
term surveillance of the monitored data streams according 
to CCITT Recommendation M.550. 

Each data stream can be assigned quality parameters by the 
operator. These consist of a quality classification (high, 
medium, or low grade) and the type classification of the link 
(path, section, or line section). These characteristics are 
processed to produce a set of thresholds that mark the data 
stream performance limits: the higher the declared quality of 
the data stream, the lower the limits. The calculated thresh 
olds also depend on another variable, the operational status 
of the data stream, which can be declared as in service, out 
of service, or repaired. The software automatically sets the 
thresholds according to the operator's declarations. 

Whenever a data stream is placed under threshold manager 
control, its performance data (ES, SES, and DM values) is 
periodically read from the database. The period, called the 
step, can be defined by the user, from 15 minutes to 1 day. 
The performance data is arcumulated in the threshold man 
ager's private registers. This process continues for a user- 
defined period of time called the reset period, ranging from 
a minimum period, which is equal to the step, to a maximum 
of one month. If during the reset period any one of the accu 
mulated values crosses the calculated threshold, the thresh 
old manager generates an alarm, which is displayed in the 
same manner as the alarms coming from the peripheral units. 

Fig. 9. Hourly G.821 statistical 
histogram. 
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Recommendation M. 550 classifies circuit performance as 
normal, degraded, or unacceptable. This classification takes 
the reference performance objective (RPO, defined earlier) 
as its reference point and scales it by a factor depending on 
the circuit type to determine the thresholds of degraded and 
unacceptable performance. For a digital path like the one 
used as an example at the beginning of this article, the scal 
ing factor for the degraded performance threshold is 0.75. 

Fig. 10. Daily G.821 statistical 
report. 

Thus, the performance of such a path is defined as degraded 
(D) when one or more of the quality parameters ES, SES, or 
DM crosses the corresponding threshold: 

D ES = 0.75 x RPO(ES) 
D SES = 0.75 x RPO(SES) 
D DM = 0.75 x RPO(DM) 

Fig. 11. Network stream alarms 
report. 
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Demux Software 
One of the most powerful capabilities of the HP E3560 pe 
ripheral unit is the possibility of taking a data stream con 
nected to the peripheral unit's front panel and extracting 
one of its tributaries. The extracted data stream can be fed 
to another monitoring board, which in turn can monitor and 
recursively demultiplex the tributary. Thus, starting from a 
140-Mbit/s data stream, one can demux down to the 2-Mbit/s 
level. 

This capability is exploited to give three different demux 
modes: slow, medium, and fast demux (these features are 
included in the base software). 

Slow demux can be used to monitor a selected tributary con 
tinuously. This is nothing more than what is normally done 
with the monitoring boards, except that the controlled data 
stream doesn't come from the transmission equipment or 
the DDF (digital distribution frame), but is extracted from a 
hierarchically higher data stream. All the operator has to do 
is select a demux source, choose the Start Slow Demux option 
in the Demux menu, and then, helped by a dialog box, ask for 
the pattern that leads to the desired tributary. An M-ACTION 
primitive is then sent to the peripheral unit, which locates 
the required resources (mainly free monitoring channels) 
and then communicates to the first-level processor the start 
of the demux action, sending back the physical addresses of 
the selected channels. These channels appear to the opera 
tor as symbols on the map, which the operator is asked to 
name to identify the selected tributaries during the demux 
operations. It is also possible to assign a group name to the 
whole demux chain (the set of streams that form the pat 
terns) which makes it possible to extract the G.821 report 
with a single query. 

Fast and medium demux are fault localization tools: their 
philosophy is the same as slow demux, but they are imple 
mented slightly differently. The idea behind these operations 
is to explore the "tributary tree" contained in a data stream 
to find possible problems. 

Fast demux starts from a selected data stream and scans the 
tree down to the 2-Mbit/s level, reporting the status of each 
tributary. If the status is not OK, the most severe alarm de 
tected during the scanning is reported. This operation is 
very quick and is automatically performed by the peripheral 
unit. After about 10 seconds, the report is ready on the 
screen. 

Medium demux operates in the same way, but the time dedi 
cated to each tributary can be chosen by the operator (from 
1 to 60 seconds). Since this results in a longer operation, the 
result is more accurate. The report also gives the BER 
estimated during the observation of the tributary. 
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G-Link: A Chipset for Gigabit-Rate 
Data Communication 
Two easy-to-use 1C chips convert parallel data for transmission over 
high-speed serial links. A special encoding algorithm ensures dc balance 
in the is data stream. A binary-quantized phase-locked loop is 
used for clock recovery. An on-chip state machine manages link startup 
automatically. 

by Chu-Sun Yen, Richard C. Walker, Patrick T. Petruno, Cheryl Stout, Benny W.H. Lai, 
and William J. McFarland 

The last decade has seen a tremendous increase in comput 
ing power with only modest advances in the bandwidth of 
the data links used to interconnect these computers. Between 
1982 and 1992, the speed of a high-performance engineering 
workstation has increased from 0.5 MIPS (million instruc 
tions per second) to 100 MIPS, an increase of over two or 
ders of magnitude. In that same period of time, computer 
network bandwidths have gone from Ethernet at 10 Mbits/s 
to FDDI at 100 Mbits/s, an increase of only one order of 
magnitude. In addition to faster computers, other factors, 
such as the widespread use of multimedia applications, will 
put pressure on network bandwidths, threatening to create 
an I/O bottleneck for modern computing systems. 

Unlike computer systems, serial links cannot exploit paral 
lelism and must run at proportionally higher rates for each 
increment in performance. At clock rates below about 100 
MHz, traditional printed circuit board design techniques can 
be used to implement link circuitry with collections of pack 
aged parts. But as link speeds approach the gigabit-per-second 
range, interchip timing skews make it impractical to build 
low-cost gigabit links in this way. Although long-haul tele 
phone networks have used gigabit-rate data links for many 
years, these links use nonintegrable components and require 
adjustment and maintenance. Such systems are easily justi 
fied when the cost is amortized over millions of users but 
are too costly and complex for computer use. 

To support the needs of computer and other generic data 
transport applications, the HP HDMP-1000 gigabit link 
(G-link) chipset has been developed. It is the first commer 
cially available 1.4-Gbaud link interface in two chips, a 
transmitter chip and a receiver chip, requiring no external 
parts or adjustments. 

The architecture of the G-link chipset greatly eases the job 
of the system designer. Communication between the chipset 
and the user's system takes place through a low-speed paral 
lel interface. All gigabit-rate signals, with the exception of 
the serial electrical data stream, remain internal to the chips 
and are never routed on the printed circuit board. Thus the 
designer is able to use standard printed circuit board design 
techniques to deliver gigabit-rate performance. For fiber 

optic applications, the high-speed serial signals are easily 
connected to lightwave transmitter and receiver modules. 
To simplify the designer's job further, a link-management 
state machine controller implemented on the receiver chip 
insulates the user from many of the details associated with 
link startup and error monitoring. 

The chipset was designed in HP's 25-GHz fj silicon bipolar 
process and incorporates patented circuit techniques devel 
oped at HP Laboratories, namely the encoding scheme and 
the phase-locked loop circuit. These new techniques, de 
scribed later in this paper, represent departures from tradi 
tional telecommunication practice and have made practical 
the integration of an inexpensive and easy-to-use gigabit- 
rate chipset. 

Overview 
Fig. 1 shows a typical G-link application supporting a full- 
duplex interconnection between two hosts. One transmitter 
and one receiver chip are used for each end of the link. 

From the user's viewpoint, the chipset behaves as a "virtual 
ribbon cable" for the transmission of parallel data over serial 
links. Parallel data is serialized by the transmitter chip and 
deserialized by the receiver chip into the original parallel 
form. The chipset hides from the user all the complexity of 

Fig. 1. A duplex link built with the HP HDMP-1000 gigabit link 
(G-link) chipset. 
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G-Link Transmitter 

Data 

Serial  Data 

Fig. 2. Simplified transmitter chip block diagram. 

encoding, multiplexing, clock extraction, demultiplexing, and 
decoding needed for high-speed serial data transmission. 

The transmitter chip (Figs. 2 and 3) accepts the user's paral 
lel data word and clock. The word-rate clock is internally 
multiplied up to the serial rate in the transmitter chip phase- 
locked loop. This high-speed serial clock is used to multi 
plex the encoded data. The encoding algorithm, called 
conditional inversion with master transition, or CIMT,1 
creates a frame for data transmission by appending four 
coding bits to each input data word. The resulting frame is 
then transmitted in either normal or inverted form,2 as nec 
essary, to maintain dc balance of the serial bit stream for 
transmission over optical links or coaxial cables. This CIMT 
line code distinguishes itself by being efficient and simple to 
implement compared to other line codes such as 8B/10B. 

To support modern network protocols, the chipset allows 
the transmission of three different types of frames. Generic 
user data is transmitted with data frames. Control frames 
are the second type of frame, and are used for the transmis 
sion of information that should be treated separately from 
data, such as packet headers. Fill frames are the third type 
of frame, and are sent automatically by the link during 
startup and to maintain synchronization when the user 
has neither data nor control information to send. 

In the receiver chip (Figs. 4 and 5), the clock and frame 
alignment are extracted from the incoming data stream with 
a phase-locked loop. The data is then demultiplexed and 
decoded back to its original parallel form. In addition to 
these basic functions, the receiver chip also includes a state 
machine controller, which performs an end-to-end hand 
shake and provides both bit and frame synchronization. This 
handshake avoids the false lock problems that are typical 
with clock extraction circuits that accommodate a wide 
range of clock frequencies. 

An unconventional "bang-bang" phase-locked loop'3 is used 
in the transmitter and receiver to provide adjustment-free bit 
retiming at very high data rates. Using the special master 
transition built into the line code, the phase-locked loop pro 
vides frame synchronization without the periodic insertion 
of special frame synchronization words. 

A very compact chip layout was achieved by using three lay 
ers of metal and a quasi-gate-array ECL design methodology. 

1 In this paper, a frame is defined as an encoded input word. 

LJ 

Fig. 3. Photomicrograph of the transmitter chip. 

The 68-pin surface-mount package (Fig. 6) is designed to 
maintain good performance for 1.4-GHz signals. 

The key features of the chipset are: 
Parallel ECL bus interface 
16 or 20 bits wide, pin selectable 
Flag bit usable as extra data bit (17th or 21st) 
CIMT encoding and decoding 
Ac/dc coupled 
110 to 1400 Mbaud serial line rate 
On-chip phase-locked loops for transmitter clock generation 
and receiver clock extraction 
Local loopback mode for troubleshooting 
Single -5V +10% supply voltage 
2W power dissipation per chip (typical) 
Can be used with fiber optic links 
On-chip equalizer for use with coaxial cable 
Standard 68-pin CQFP (ceramic quad flat package). 

Because of the simplicity and flexibility of the G-link chip 
set, it can be used for a wide variety of applications, includ 
ing computer backplanes, video distribution, peripheral 
channels, and networks. 

G-Link Receiver 
Data 

Startup 
Control 

State Machine Control ler  

Fig. 4. Simplified receiver chip block diagram. 
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Fig. 5. Photomicrograph of the receiver chip. 

G-Link Line Code 

Many coding schemes have been developed to allow com 
munication of information over various types of channels. In 
synchronous communication links, clock and framing in 
formation must be transmitted along with data in such a way 
that the clock and data can be recovered at the receiving 
end of the link. Therefore, it is necessary for the transmitted 
encoded serial bit stream to have enough embedded clock 
information for the receiver to recover the serial clock. 
There must also be some method of frame alignment so that 
the boundaries of a frame can be located at the receiver. 

In optical links, it is desirable to ac couple the data signals 
to simplify laser bias circuitry and optical receiver design. 
This is also true in repeater design, since the components 
are commonly ac coupled. A problem with ac coupled sys 
tems is that the baseline will shift when the transmitted digi 
tal data is not dc balanced. This shift makes delect ion diffi 
cult and degrades the system noise margin. To overcome 
this problem, arbitrary data is typically encoded before 
transmission to achieve dc balance. The receiver restores 
the data to its original form by decoding. 

In the G-link chipset, the CIMT coding scheme performs the 
following tasks: 
The transmitter chip supplies a master transition in every 
frame for clock recovery and frame alignment at the receiver. 
Frames are conditionally inverted as necessary to maintain 
dc balance. 
Information is provided in the transmitted frame about the 
type of frame transmitted and whether or not the frame was 
inverted. 
At the receiver, decoding is done to determine what type 
of frame was received and whether or not the frame was 
inverted. 

â€¢ If the frame was inverted at the transmitter, it is inverted 
again at the receiver to restore the information to its original 
form. 

â€¢ The receiver performs error checking on portions of the 
frames to detect loss of lock. 

This method of encoding and decoding has several 
advantages: 

â€¢ Clock information is available in each frame, indicating both 
phase and frequency alignment. 

â€¢ There is no need for the user to send any special characters 
to indicate the start of a new frame. The G-link chips perform 
frame alignment transparently. 

â€¢ There are no restrictions on the user's input bit patterns. Dc 
balance is maintained by frame inversion and a maximum 
run length is guaranteed by the master transition. 

â€¢ By checking for framing errors, the receiver can detect loss 
of lock and reinitiate the link startup process. (A discussion 
of link startup can be found under "Startup State Machine 
Controller" on page 109.) 

Data is encoded by appending four extra coding bits (C-field) 
to the input data (D-field). The serial combination of the 
D-field and the C-field makes a frame. The user can choose 
to transmit either data frames or control frames. In addition, 
two types of fill frames are internally generated for trans 
mission when there is no input supplied by the user or dur 
ing startup. To maintain dc balance, data and control frames 
are either inverted or not inverted. Information about inver 
sion and the type of frame is contained in the C-field. Unlike 
typical codes with fixed data width, the CIMT code can 
accommodate multiple data widths. 

The G-link chipset is designed to transmit either 16-bit-wide 
or 20-bit-wide data words. Both the transmitter chip and the 
receiver chip have an input pin that allows the user to select 

Fig. 6. Transmitter chip in 68-pin ceramic quad flat package 
(CQFP). 
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the parallel word width. There is also a flag bit, which can 
be used as an extra data bit. A frame consisting of the D-field 
plus the appended C-field is then either 20 or 24 bits long. In 
the case of control frames, two bits in the D-fleld are used for 
encoding, resulting in 14 or 18 bits available for transmitting 
information. The flag bit is obtained by selecting between 
different sets of coding bits in the C-field. 

Table I shows the contents of different frames generated at 
the G-link transmitter for the case of 20-bit data. DAV (data 
input available) and CAV (control input available) are sup 
plied by the user to indicate what type of user input is to be 
transmitted. If neither data nor control inputs are available, 
a fill frame is sent. FLAG is the additional flag bit input. DO to 
D19 are the parallel inputs. INV is a logic signal internally 
generated on the transmitter chip that indicates whether the 
frame is to be inverted. 

Table I 
Contents of Different Frame Types 
for CIMT Encoding of 20-Bit Data 

The C-field bits were chosen so that a master transition al 
ways occurs between the second and third bits of the C-field. 
For data and control frames, this transition can be in either 
direction. The C-field bits were also chosen so that the codes 

for data and inverted data frames are complements of each 
other. The same is true for control frames. This allows the 
entire frame to be inverted with the correct C-field bits for a 
particular type of frame. 

There are two types of fill frames, referred to in Table I as 
FFO and FF1. FFO, a training sequence used during startup, 
has a single rising edge at the master transition and is a 
square wave with 50% duty cycle. The receiver's clock recov 
ery circuit is able to lock onto this signal, extract the serial 
clock, and provide frame alignment. FF1, another training 
sequence used during startup, is also sent after startup 
whenever the user does not supply inputs for data or control 
frames. FF1 is similar to FFO except that the position of the 
falling edge moves by one bit forward or backward, creating 
a square wave that is two bits heavy (FF1H) or two bits light 
(FF1L). The decision to send either FF1H or FF1L is made 
depending on the disparity of previously transmitted bits, 
in an attempt to reduce the disparity to zero. Since FFO is dc 
balanced and the two types of FF1 frames are sent to reduce 
disparity, fill frames are not inverted. 

Noninverted control frames have the same C-field as fill 
frames, but are distinguished from fill frames by the center 
two bits of the D-field, which are 01. Control frames are in 
verted when appropriate, but then have a different, unique 
C-field. 

All other possible C-field codes that are not listed in Table I 
are not allowed and are considered to be errors if received. 
The receiver detects the loss of a master transition or a for 
bidden C-field code as a frame error. This information is 
used by the receiver's state machine to derive the link sta 
tus. In addition, if the flag bit is not used by the user, it is 
used for additional frame error checking. The flag bit is al 
ternated internally by the transmitter and this alternation is 
checked at the receiver. 

Coding Implementation 
Fig. 7 shows a block diagram of the transmitter chip. The 
user supplies the parallel inputs DO-D19, a frame rate clock, 
the DAV and CAV inputs, and the FLAG input (optional). The 
high-speed and subrate clocks are derived from the frame 
rate clock by a phase-locked loop circuit. "System I/O" 

' Disparity is the number of 1 s minus the number of Os. 

System I/O 

Frame 
Clock 

Clock 
Mul t ip l ie r  

(Phase-Locked 
Loop) 

Fig. 7. Transmitter encoding 
circuitry. 
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Clock 
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DAY 
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Frame Clock 

High-Speed and 
Subrate Clocks 

Fig. 8. Receiver decoding circuit ry. 

refers to other signals that are involved in the link's config 
uration and status. RFD (ready for data) is an output indicat 
ing to the user that the link is ready to transmit data. The 
D16-D19 inputs are ignored when the user selects 16-bit 
parallel word width. 

Depending on the DAV, CAV, and FLAG inputs, the C-fleld coding 
bits are generated and any necessary encoding of the D-fleld 
is performed. Then the C-field and D-fleld bits are evaluated 
in a sign circuit whose output is the sign of the disparity of 
the frame. A separate accumulator keeps track of the dispar 
ity of previously transmitted bits. The decision to invert or 
not to invert a frame is made based on the outputs of these 
two circuits and is indicated by the signal INV. If the signs of 
the disparities of the current frame and the previously trans 
mitted bits are the same, INV is high and the current frame is 
inverted. If they are not the same, INV is low and the frame is 
not inverted. Only data and control frames are inverted; the 
invert function is disabled for fill frames. The frame is serial 
ized with a circuit that multiplexes the parallel inputs into a 
serial bit stream and performs any necessary frame inver 
sion. The output of this circuit is then transmitted across 
the serial link. 

A block diagram of the decoding portion of the receiver chip 
is shown in Fig. 8. After startup, the serial clock and the 
framing information are produced by the receiver's clock 
recovery circuitry, allowing the receiver to recover the serial 
data and demultiplex it back to parallel form. The frame 
clock is provided as an output for use in the user's system. 

By examining the C-field bits, the C-field decoder deter 
mines what kind of frame has been received and whether or 
not it has been inverted. With this information, the D-field 
decoder restores the parallel data back to its original form. 
In addition, the C-field decoder provides DAV, CAV, and FLAG 
information back to the user. These signals have the same 
definitions as the corresponding transmitter inputs. The 
C-field bits are also used by the receiver's state machine to 
check for frame errors. 

Encoding Circuitry 
Encoding on the transmitter chip is performed mainly by 
logic cells and two on-chip programmable logic arrays 
(PLAs). However, there are two special parts of the frame 
inversion function. The first is an analog sign circuit which 

determines whether a frame has more high or low bits. The 
second is an accumulator which keeps track of the disparity 
of the pre\iously transmitted data. 

The sign circuit on the transmitter consists of one differen 
tial pair per bit. a summing circuit, and a comparator. To 
prevent errors in determining a frame's sign, it is important 
for the differential pairs to have matched current sources. 
Therefore, each differential pair is supplied by two current 
sources from an array of current sources laid out in com 
mon centroid fashion. This reduces the effects of process 
and temperature gradients on the value of each pair's com 
bined current source. In addition, large-geometry resistors 
are used to improve matching of the current sources. 

The currents are summed at shared collectors through resis 
tors, creating a differential voltage proportional to the differ 
ence between the numbers of Is and Os in the frame. When 
there are more Is than Os, this voltage is positive; when 
there are more Os than Is, it is negative. This voltage then 
drives a comparator, which produces a high or low logic 
signal depending on the sign of the input voltage. This 
method of determining the sign of a frame is simpler and 
faster than a digital solution. 

The accumulator circuit keeps track of the disparity of pre 
viously transmitted bits. It is implemented with a 6-bit up/ 
down counter. To relieve timing constraints, the counter 
operates on two bits at a time. This allows it to operate at a 
clock rate that is half the serial output rate. 

The counter can count from all Os to all Is and is reset at 
startup to the midpoint, which is considered a balanced 
state. The range of this 6-bit counter is then -32 to +31 bits, 
where 0 is the balanced state. With two input bits, there are 
four possible combinations: 11 which has a disparity of +2 
bits, 00 which has a disparity of -2 bits and 01 or 10 which 
are balanced with zero disparity. Since we only need to 
count up or down by multiples of 2, we can allow one bit of 
the counter range to correspond to a disparity of 2 bits. 
Thus the effective counter range, in bits of disparity, be 
comes -64 bits to +62 bits. The worst-case disparity that can 
occur with this coding scheme is Â±31 bits, which is well 
within the range of the counter. The most-significant bit of 
the counter is compared with the output of the sign circuit 
to decide whether to invert the frame. 

Accumulating two bits at a time is the most convenient ap 
proach. If the counter were to operate on one bit at a time, it 
would still have to count either up or down and one bit of 
the counter range would correspond to one bit of disparity. 
Thus, the range of a 6-bit counter would be -32 to +3 1 bits of 
disparity, which would not have enough margin beyond the 
worst-case disparity of Â±31 bits. A higher-order counter 
would be required, and it would also have to run at the full 
serial output rate, resulting in increased power consumption. 

If the counter were to operate on four bits at a time, it 
would have the benefit of running at one fourth of the serial 
rate, but it would have to count up and down by 4, up and 
down by 2, or remain unchanged. One bit of the counter 
range could correspond to two bits of disparity as in the 
case implemented, but the counter design would be more 
complex. 
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Fig. requires Typical clock extraction and data retiming circuit requires 
phase adjustment and wide bandwidth. 

Phase-Locked Loop 

In a serial data link, the clock signal is not explicitly trans 
mitted, but is instead implied by the transitions of the data 
stream. By examining the transitions in the data stream with 
a clock extraction circuit it is possible to create a replica of 
the original clock that was used to transmit the data. This 
recovered clock can then be used to sample and restore the 
potentially degraded analog input. 

Many high-speed clock extraction techniques exist, but most 
have been developed for long-haul telephone applications. 
Telecom systems are designed to maximize the distance- 
bandwidth product of the link. This criterion minimizes both 
the number of physical repeater sites and the number of 
fibers that have to be installed in a given run. As a result, a 
much higher premium is placed on clock-extraction perfor 
mance than on cost-effectiveness. These objectives have 
made for class of clock extraction techniques unsuitable for 
datacomm applications. 

Traditional Telecom Clock Extraction Circuits 
Fig. 9 shows a representative clock extraction and data re 
timing circuit that is used for high-bit-rate telecom systems. 
The incoming analog data stream is split into two parallel 
paths: the clock extraction chain and the data retiming path. 

Because an NRZ (nonreturn to zero) data stream does not 
have a spectral component at the clock frequency, some 
nonlinear process must be used to derive a clock signal 
from the data stream. In the typical circuit of Fig. 9, a time 
derivative is applied, followed by an absolute value function. 
This combination of elements creates a narrow unidirec 
tional pulse for every transition of the data. This new wave 
form contains a spectral component at the clock frequency. 
Once the clock component has been created, it can be iso 
lated either by a filter, typically implemented with a SAW 
(surface acoustic wave) device, or by a phase-locked loop. 

There are two problems with this configuration. The first is 
that, although the circuit extracts the correct clock fre 
quency, it does not extract the correct phase. There is a 
large phase shift between the input data and the recovered 
clock. The phase relationship between the clock and the 
data must then be adjusted somehow to compensate for 
process and temperature variations. The second problem is 
that the creation of narrow pulses requires high circuit 
bandwidth. This is often the speed-limiting factor for giga 
bit-rate clock recovery circuits. 

G-Link Solution 
A design goal of the G-link chipset was to eliminate all exter 
nal parts and user adjustments and effectively hide the sys 
tem complexity from the user through monolithic integration. 
The clock extraction circuit was most impacted by these 
requirements. To achieve these aggressive goals, a new 
phase-locked loop circuit was developed based on a binary- 
quantized ("bang-bang") phase detector. 

The phase-locked loop circuit used in the G-link chipset (see 
Fig. 10) works hand in hand with the CIMT line code to 
avoid both the phase adjustment problem and the band 
width requirement of the traditional techniques. In this cir 
cuit, the incoming data splits into two paths (just as in the 
traditional telecom approach). Instead of a complex phase 
detector, which is potentially mismatched in delay to the 
retiming latch, two matched latches are used at the front 
end of the circuit. One latch is used for retiming and the 
other for phase detection. Because both latches are laid out 
identically on the chip, their delays are well-matched. 

The two latches are driven by the VCO through a comple 
mentary buffer. If the VCO is properly aligned, the top latch 
samples the center of the data cell on rising edges of the 
clock while the lower latch samples the data transitions on 
the falling edge of the clock. 

Because the G-link line code provides a guaranteed transi 
tion at a fixed, defined location in every frame, the sample 
of this transition can be used as an indication of the loop 
phase error. The VCO output is divided by either 20 or 24, 
depending on the selected word width, to produce one sam 
pling pulse per frame. That clock pulse is used to take a 
sample in the vicinity of the master transition so that a 
phase update is generated, once per frame, indicating 
whether the VCO is early or late with respect to the master 
transition. Assuming a rising master transition, as shown in 
Fig. 11, if the VCO is too high in frequency, the sampling 
point drifts to the left of the master transition and a low 
value is sampled. If the VCO is too low, the sampling point 
moves to the right and a high value is sampled. This circuit 
then produces a one or zero indication from the phase detec 
tor that tells whether the VCO is early or late with respect to 
the incoming data. 

Since the fastest operating element in this circuit is a latch 
operating at the serial rate, this circuit is usable up to the 

Retimed 
Output Data 

VCO 

Transition 
Samples 

Master  
Transition 
Samples 

Fig. (bang- Simplified diagram of the G-link binary-quantized (bang- 
bang) phase-locked loop and data retiming circuit. 
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Fig. the Once per frame, the phase-locked loop detects whether the 
VCO is early or late with respect to the master transition encoded in 
each frame. 

highest frequency at which a given process is capable of 
making a functioning latch. In addition, the circuit inher 
ently provides excellent phase alignment between the VCO 
and the data. Note that the output of the phase detector latch 
is not linearly proportional to the loop phase error, but is 
instead a binary-quantized representation of the error. This 
characteristic renders the loop equations nonlinear and re 
quires unconventional design methods (see "Bang-Bang 
Loop Analysis," page 110). 

False Locking and Frame Synchronization 
During initial link startup, it is necessary to ensure that the 
phase-locked loop correctly determines the frequency of the 
incoming data and finds the location of the master transition. 

In many clock extraction circuits, the clock frequency is 
extracted from a coded, random data stream. A common 
difficulty with this approach is the problem of the phase- 
locked loop locking onto wrong frequencies that are har 
monically related to the data rate. To avoid this problem, 
most systems limit the VCO range so that it can never be 
more than a few percent away from the correct frequency. 

A narrow-band VCO using external components was not 
consistent with the goal of building a completely monolithic 
chipset. Integrated oscillators rely on low-tolerance 1C com 
ponents and are typically limited to +30% tolerance on the 
center frequency. For customer flexibility, it was desired to 
extend the oscillator range to cover at least an octave. This 
range, in conjunction with digital dividers, allows the G-link 
chipset to operate over a range of 1 10 to 1400 Mbaud in four 
bands. 

A second design problem is frame synchronization. At the 
receiver, some method must be employed to determine the 
boundaries between frames so that they can be properly 
deserialized back into the original parallel words. The G-link 
chipset establishes and monitors frame synchronization by 
using the embedded master transition. Unlike other links, 
the G-link chipset allows the continuous transmission of 
unbroken streams of data, without the insertion of special 
frame synchronization words. 

Startup State Machine Controller 
To eliminate the problems of false locking and frame syn 
chronization, the G-link chipset uses a startup state machine 
and the special training fill frames. 

Because the internal VCO is capable of operating over 
nearly a 3:1 range of frequencies, a frequency detector is 
necessary to avoid false locking problems. The frequency 
detector operates only when simple square-wave fill frames 
are being sent. A conventional sequential frequency detec 
tor, built of two resettable flip-flops, determines the sign of 
the frequency error. When the phase error is less than Â±22.5 
degrees, the output of the phase detector is used. Otherwise, 
the loop filter is driven by the frequency detector output. 
Because the frequency detection circuit cannot operate on 
data frames, the state machine controller must disable the 
frequency detection circuit before allowing data to be sent. 

Neither node of a duplex link can achieve lock unless the 
opposite side is sending special fill frames. Neither side of 
the link can stop sending fill frames and start sending data 
unless the other side has successfully achieved lock. The 
state machine uses the two distinct fill frames FFO and FF1 
to allow one side of the link to notify the other side of its 
current locking status. This guarantees that fill frames will 
be sent whenever needed to restore lock, and only as long 
as necessary to achieve lock. 

As described previously, FFO is a 50% balanced square wave 
with equal numbers of 0 and 1 bits. FF1 consists of two 
modified square-wave patterns. These two patterns are used 
as needed to maintain dc balance on the link. Both FFO and 
FF1 have a single, rising transition, which is in the same 
position in the frame as the master transition of data and 
control frames. The rising edge of the fill frames is used ini 
tially to establish an unambiguous frame reference. After 
initial lock, the master transition of the data frames is used 
to maintain frame lock. 

Fig. 12 shows the state machine handshake procedure for a 
full-duplex link in greater detail. Both the near and far ends 
of the link independently follow the state diagram of Fig. 12. 
The three states are defined by the state variables STATO and 
STAT1. At power-up, each end of the link enters the sequence 
at the arc marked "Start." 

S t a r t  

F r e q u e n c y  a n d  F r a m e  
A c q u i s i t i o n  

0 ,0  

FFO or FF1 

W a i t i n g  f o r  P e e r  

0,1 

S e n d i n g  D a t a  

1,1 

F F 1  o r  D a t a  o r  C o n t r o l  

F r a m e  E r r o r  o r  D a t a  
o r  C o n t r o l  

F F 1  o r  D a t a  o r  C o n t r o l  

Fig. link, State machine handshake procedure for a full-duplex link, 
showing the values of the state variables STATO and STAT1 (0,0, etc.). 
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Bang-Bang Loop Analysis 

A simplified version of the clock recovery phase-locked loop of the G-link chipset 
is shown in Fig 1 . Only the transition sampling latch is shown, and the input is 
assumed to be a square wave at the same frequency as the VCO. 

The VCO integral controlled through a loop filter that consists of the sum of an integral 
signal VCO a proportional signal. Because the phase detector is quantized, the VCO 
frequency switches between two discrete frequencies, causing the VCO to ramp 
up and down in phase, thereby tracking the incoming signal phase. 

If the loop is properly designed, the system can be considered to be composed of 
two noninteracting loops. These are the paths labeled proportional branch and 
integral branch in Fig. 1 . The first loop includes the connection of the phase detec 
tor to second VCO input through a proportional attenuator, while the second loop 
drives the VCO through an integrator. 

The proportional signal tunes the VCO, causing the output of the phase detector to 
switch dc between 1 s and Os at a fairly high frequency. Other than the dc 
component, the bulk of the phase detector output signal spectrum falls outside the 
effective passband of the integrator branch of the loop. Thus the integrator branch 
operates on just the dc component of the phase detector output. Its job is to servo 
the center frequency of the VCO so that the two discrete VCO frequencies pro 
grammed by the proportional input will always bracket the frequency of the in 
coming not signal. This frequency adjustment occurs so slowly that it does not 
materially affect the operation of the high-frequency bang-bang portion of the 
loop. 

Proportional Branch 
To simplify the analysis of the first branch of the loop in Fig. 1, the integrator 
output tuning be replaced with a constant reference voltage so the proportional tuning 
input run cause the VCO to bracket the incoming frequency. The VCO will then run 
at two incoming frequencies: at a frequency slightly higher than the incoming data, 
thereby advancing the phase, or at a lower frequency, thereby retarding the phase. 

If the incoming frequency is midway between these two discrete frequencies, the 
loop will switch between the two frequencies with approximately a 50% duty 
cycle. If the incoming frequency is slightly higher than the nominal VCO center 
frequency, the duty cycle will shift such that the loop will spend a higher percent 
age of time at the high frequency than at the low frequency. In general, it can be 
shown that the duty cycle present at the output of the phase detector is propor 
tional to the difference in frequency between the incoming signal and the nominal 
VCO center frequency. 

Integral Branch 
The second branch of the loop contains the integrator. Because the integrator 
effectively filters out the oscillatory portion of the phase detector output and only 
reacts to the average value of the phase detector output stream, the proportional 
branch a the loop can be ignored here by replacing the phase detector with a 
virtual frequency detector. The integrator extracts the dc component and thereby 

M a s t e r  
Transitions 

Phase 
Detector 

Latch Proportional Branch 

VCO 

Total VCO Phase Change 
Resulting from Step In 

Detector Output 

Phase Change from 
Integral Branch 

Fig. 1. considered version of the phase-locked loop. For analysis, the loop can be considered a 
combination of two noninteracting loops: a proportional branch and an integral branch. 

Phase Change from 
Proportional Branch 

1  2  

Time (in update times) 

Fig. the change to VCO phase changes. Stability factor is the linear phase change divided 
by the quadratic phase change in the same time. 

tunes the center frequency of the VCO so that it is always equal to the incoming 
data rate. 

In a conventional linear phase-locked loop, the loop error signal is proportional to 
phase error but is used to control the VCO frequency. This introduces an integration 
in the loop transfer function. This integration, in conjunction with the loop filter, 
creates a second-order feedback loop. Such loops can exhibit an underdamped 
response to changes in input phase, leading to an undesirable exponential buildup 
of jitter in systems with long cascades of repeaters. 

In the G-link phase-locked loop, the phase-detector dc component is proportional 
to frequency rather than phase. Because the the frequency of the VCO is con 
trolled in a frequency error signal rather than a phase error signal, no extra in 
tegration appears in the loop transfer function. This means that no jitter buildup 
results from the action of the integral branch of the loop. The jitter statistics are 
simply proportional by the hunting behavior of the high-frequency proportional 
branch of the loop. 

Loop Stability 
To reach a qualitative understanding of the loop behavior, the two branches of the 
loop to assumed to be noninteracting. For this assumption to be valid, certain 
conditions must be met. 

It is samples, that the loop be set up so that, between phase samples, the action 
of the proportional branch of the loop dominates over the action of the integral 
branch. This can be verified by creating a step change from the phase detector 
and tracking its effect on both halves of the loop. Fig. 2 shows the contributions to 
the VCO make change. In the proportional path, the VCO is programmed to make 
a small In change in frequency, which causes a linear ramp in the phase error. In 
the integral path, the integrator programs a linear ramp in VCO frequency, which 
causes a quadratic walk-off in the VCO phase. 

The ratio of these effects at the end of one frame update time gives a figure of 
merit for the loop design. The phase change from the proportional branch of the 
loop must be greater than or equal to the phase change from the integral branch 
of the stability for the system to be stable. In the G-link design, this stability ratio is 
designed to be always greater than 1 0. 

Richard C. Walker 
Principal Project Engineer 
Hewlett-Packard Laboratories 
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Fig. 13. The VCO consists of three variable-delay cells configured as 
a ring oscillator. 

Each state in the state machine has three notations. The top 
notation is either "FDet" or "Phase." FDet stands for fre 
quency detect mode, and implies that the frequency detector 
has been enabled in the receiver chip phase-locked loop. 
When the chip is in this mode, it is important that no data be 
sent, because the frequency detector is only able to lock onto 
one of the special training fill frames FFO or FF1. The Phase 
notation means that the receiver phase-locked loop has 
been switched to phase-detect mode and is ready to allow 
data transmission. The middle notation in each state is the 
fill word that is currently being sent by the node's transmit 
ter chip. The last notation is the ready-for-data (RFD) status 
of the transmitter chip. When RFD is low, the transmitter chip 
signals the user to hold off any incoming data while it is 
sending fill frames. When RFD is high, data is sent if avail 
able, and if not, fill frames are sent to maintain link 
synchronization. 

The two bits bracketing the master transition are monitored 
by the receiver chip to detect a locked condition. If these 
two bits are not complementary for two or more consecu 
tive frames, it is considered a frame error. The receiver 
chips at both ends of the link are able to detect data, con 
trol, FFO, and FF1 frames and frame errors. Transitions are 
made from each of the states based on the current status 
condition received by the receiver chip. Each of the arcs in 
Fig. 12 is labeled with the state that would cause a transition 
along that arc. 

If either side of the full-duplex link detects a frame error, it 
notifies the other side by sending FFO. When either side re 
ceives FFO, it follows the state machine arcs and reinitiates 
the handshake process. The user is notified of this action by 
the deasserting of RFD. 

This startup protocol ensures that no user data is sent until 
the link connectivity is fully established. The use of a hand 
shake training sequence avoids the false lock problem in 
herent in phase-locked loop systems that attempt to lock 
onto random data with wide-range VCOs. 

Loop Implementation 
The VCO is built from three variable-delay cells configured 
as a ring oscillator (Fig. 13). The ring provides a wide-range 
tuning input and a small "bang-bang" tuning input. The wide- 
range input adjusts the delays of each stage from one gate 
delay to three gate delays, thus giving a 3:1 VCO frequency 
range. This wide range allows the final system to be specified 
with a 2: 1 range over both process and temperature varia 
tions. The bang-bang tuning input programs a small change 
in the VCO frequency and is driven by the proportional 
branch of the loop filter. 

The loop filter is implemented with a charge pump integra 
tor and a 0.1-uF external capacitor, which is housed within 
the package. The integrator is based on a unity-gain positive 
feedback technique (Fig. 14) which cancels out the droop in 
the integrator filter capacitor. The effective dc gain of this 
circuit approaches infinity as the feedback gain approaches 
unity. The unity-gain technique achieves high dc gain while 
avoiding the stability and noise sensitivity problems of on- 
chip high-gain operational amplifier designs. 

G-Link Chipset Implementation 

To achieve the best speed and power performance, the 
G-link chips were designed using the HP B25000 25-GHz fT 
silicon bipolar process. This process allows mixed-mode 
designs ranging from dense low-power logic structures to 
high-performance analog cells. A three-layer metal system 
allows compact layouts, minimizing chip area and cost. This 
process features transistors with minimum pitch of 2.6 um. 
Only simple npn transistors and p+ and p- resistors were 
used in the design. 

Building Block Design 
The G-link chipset is a fully custom circuit using specially 
designed cells as building blocks. These include (1) logic 
cells for of gates, latches, and flip-flops, (2) PLAs for 
low-speed logic, and (3) I/O cells, which include all of the 
low-speed ECL and high-speed input and output drivers. A 
band-gap reference was also designed to stabilize chip per 
formance with variations in temperature and power-supply 
voltage. 

Logic Cells and Arrays. Since logic elements are used most 
widely in the G-link chipset, considerable effort went into 
optimizing their performance, power, and active area. A 
three-level tree structure was chosen to implement the logic 
functions. All signals are differential to improve noise mar 
gins and to reduce ground currents, which could disrupt the 
analog circuitry. The inputs and outputs of these gates and 
latches are fully level-compatible for ease of routing. Each 
functional cell has resistor options by which the speed can 
be traded off with power. In all, there are four power classes 
for each logic cell. An example of a master-slave flip-flop with 
a 2:1 input multiplexer is shown in Fig. 15. This circuit is 
designed to operate up to 2 Gbits/s at a junction temperature 
of 125Â°C with a fanout of 10. 

Input from Phase 
Detector Latch 

Output to VCO 

External 
Capacitor 

( in Package) 

For  A  1 ,  C i rcu i t  Approx imates  
Ideal Integrator with Time 

Constant = RC 

Fig. 14. The loop filter is implemented with a charge pump 
integrator based on a unity-gain feedback technique. 
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Fig. 2:1 Schematic diagram of the master-slave flip-flop with 2:1 input multiplexer. 

Low-speed logic is implemented, where possible, with array 
structures for compactness and reduced power. The single- 
ended logic PLAs with AND-OR planes are designed to be pro 
grammed using only metal layers. Altogether, two PLA cells 
are used in the transmitter and one in the receiver. 

Input/Output Cells. An effort was made in the I/O design to 
make the chips easy to use. Except for the high-speed serial 
signals, all of the chip I/O is 100K ECL-level-compatible. To 
minimize the power dissipation of the chip, ECL outputs are 
limited to driving 10 cm of transmission line with a mini 
mum characteristic impedance of 50 ohms terminated into 
300 ohms. For added convenience, unconnected inputs are 
internally biased to low ECL logic levels, and are sensed as 
high levels if the inputs are grounded. 

A special input cell was designed for all gigabit-rate input 
signals. Both differential inputs of the cell are biased to 
ground with 50-ohm terminating resistors. This configura 
tion allows singled-ended or differential input signals to be 
conveniently ac or dc coupled. This cell is used for the 
strobe and high-speed clock inputs of the transmitter and 
for the data and high-speed clock inputs of the receiver. 

The G-link chipset is designed to work with either optical 
fiber or copper coaxial cable media. For cable applications, 
the data input cell of the receiver has an optional equalizer 
to extend the usable distance of the link. The equalizer cir 
cuit is designed with 3 dB of gain peaking at 600 MHz to 
compensate for signal roll-offs caused by the skin loss effect 
in coaxial copper cables. Operating at 1.2 Gbaud with RG-58 
coax, the equalizer extends the usable cable length by over 
50% for a given bit error rate. 

All high-speed outputs are driven by buffered-line-logic 
cells. Buffered-line-logic drivers^ provide differential out 
puts capable of delivering 0.7V into 50 ohms, ac or dc coupled 
to ground. If dc is coupled into -1.3V, the levels are ECL- 
compatible. In addition, the source impedance of the driver 
is matched to 50 ohms with a VSWR of less than 2:1. This 

makes the high-speed connections of the G-link chips very 
convenient and easy to use. The only requirement is that 
unused outputs be terminated into 50 ohms. 

Band-Gap Reference. To minimize circuit drifts caused by 
environmental changes, a band-gap reference with power 
supply compensation was designed. This circuit provides a 
reference voltage that powers up all cells in both chips. A 
power-down feature in this circuit enables portions of the 
chips to be turned off to conserve power. 

Layouts 
To minimize the design and layout effort, a generic design 
structure was used as the basis for all cell layouts. Each of 
the various logic cells was built from the generic array of 
transistors and resistors by customizing the metal intercon 
nections. The ratio of devices used to total devices available 
reached over 95% in this design. This layout technique has 
the advantage of easy reconfiguration for design revisions. 
The I/O port locations are uniformly defined for all cells to 
simplify cell interconnection. 

An example of a master-slave flip-flop with a 2:1 multiplexer 
input is shown in Fig. 16. This circuit array, measuring just 
104 by 135 fim, is customized with two layers of metal. 

All cells and power buses are designed to be placed using a 
coarse grid. This simplifies the placement of cells in the sys 
tem design level. Another feature is that all cells have test 
probe points accessible at the top metal such that all con 
nection signals can be test probed for diagnostic purposes. 

The transmitter and receiver chips each measure 3.5 mm on 
a side. The high-speed and low-speed pads for each chip are 
arranged so that a single package design accommodates 
both chips. 

The design of the chips relied heavily on simulation and veri 
fication tools such as the Spice simulation program and HP's 
proprietary Bipolar-Chipbuster 1C layout system. The Spice 

112 October 1992 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



Fig. input Chip layout of the master-slave flip-flop with 2: 1 input 
multiplexer. 

circuit description files were extracted from the artwork 
including parasitic capacitors for final simulation before 
fabrication. 

Packaging 
A custom 68-pin ceramic quad flat package (CQFP) was 
designed specifically for the G-link chipset. It features 
50-ohm transmission lines for the high-speed I/O pins and 
internal 0.1-[Â¿F capacitors for power supply bypassing and 
for the integrator of the phase-locked loop. It also has inter 
nal ground vias to minimize inductance, thereby reducing 
noise. Its outline conforms to standard 68-pin packages. The 
typical chip-to-case thermal resistance is under 14Â°C/W. 
Both the package and the chips are compatible with auto 
matic assembly techniques for high-volume low-cost 
manufacturing. 

After the chips and capacitors are mounted and the pack 
ages sealed on the lead frame, the units are placed onto 
plastic carriers for lead protection. A special test fixture was 
designed to test the final parts in this carrier at full speed. 

Electrical Performance 
The G-link chips' power dissipations are both under 2.5 watts 
worst-case. The 20%-to-80% rise and fall times of the high 
speed data outputs are under 200 ps. The chipset is specified 
from 1 10 Mbaud to 1.4 Gbaud under all conditions. The 
lockup time of the phase-locked loop including frequency 
acquisition is less than 2 ms. 

Features and Applications 

The features and flexibility of the G-link chipset make it 
ideal for a wide variety of applications. These applications 
range from computer backplane links a few meters in length 
to wide area networks 10 kilometers long. The low cost and 
high integration level of the G-link chipset make it attractive 
for systems requiring serial transfer rates up to 1.4 Gbaud. It 
can serve as a generic virtual ribbon cable or can be used to 
build complete networks and peripheral channels. The G-link 
coding scheme has been accepted by the Serial-HIPPI (High- 
Performance Parallel Interface) Implementors' Group, and 
by SCI-FI (Scalable Coherent Interface-Fiber), an IEEE 
standard. 

This section describes the features that allow the G-link chip 
set to be applied to this broad range of applications. It also 
describes a few specific applications, including generic data 
transport, networking standards, and simplex applications. 

Ease of Use 
Since most computing equipment both sends and receives 
data, the great majority of these applications are full-duplex. 
The state machine controller included on the chipset takes 
care of all the details of starting up such a duplex link. The 
designer needs to be concerned with only two signals: 
ready for data (RFD) and data available (DAV). RFD is the sig 
nal the state machine provides to indicate that the link is 
ready for data transmission. DAV is a signal the user controls 
to mark the availability of data. At the receiver, this signal is 
recovered and used to discern the beginning or end of data 
transmission. 

Some applications generate data in bursts or as packets. 
Such bursty data is handled automatically by the chipset. 
When no data is available to transmit, the user simply deas- 
serts the DAV line at the transmitter. The link will transmit 
FF1 as an idle code to maintain link lock and framing. At the 
receiver, a deasserted DAV signal indicates that data is not 
being received. At the start of the burst of data, the user 
asserts the DAV line at the transmitter. The data is transmitted 
across the link and marked as valid data at the receiver by 
the receiver's DAV signal. Thus the DAV signals can mark the 
beginning and end of packets while adding no burden to the 
system design. 

More complicated packet headers can be created using the 
control available (CAV) signal. This signal works like the DAV 
signal, but instead of marking the data as valid data words, it 
marks the data as special control words. A system designer 
can use these to send packet header information, link or 
system control information, or anything that needs to be 
treated separately from data. At least 214 control words are 
available, so they can be used to indicate a large number of 
packet addresses or special functions. Few communication 
links have such a rich selection of nondata words for control 
and signaling. 

Flexibility 
Flexibility was a major goal of the G-link design. To make 
this to high-volume, low-cost part, the chips were designed to 
meet the needs of as many different systems as possible. As 
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described earlier, the G-link line code can accommodate 
various word widths. This is very different from block codes 
such as 4B/5B and 8B/10B, which have fixed word widths. 
The G-link chipset readily accommodates data words of 
width 16, 17, 20, 21, 32, or 40 bits. The chipset has two fun 
damental word sizes: 16 or 20 bits. In addition, the flag bit is 
available. Therefore, 17-bit-wide words can be accommo 
dated by selecting 16-bit frames and using the flag bit as a 
17th bit. 21-bit words can be transmitted similarly. 32-bit 
words are supported by sending them as two 16-bit frames 
in a row. In this case the flag bit is used to distinguish the 
first 16-bit frame (e.g., flag = 0) from the second 16-bit frame 
(e.g., flag = 1). It is a simple matter to build the off-chip 
32:16 multiplexers and 16:32 demultiplexers since the flag 
bit automatically keeps track of the necessary frame order 
ing. 40-bit-wide words are supported analogously. The trans 
mitter chip accepts either a full-frame-rate clock or a half- 
frame-rate clock for multiplication up to the serial clock rate. 
In other words, for an 800-Mbit/s data rate and 16-bit words, 
the chip will accept a 50-MHz frame clock. When 32-bit words 
are transmitted it accepts a 25-MHz frame clock. This saves 
the system designer the trouble of doubling the word clock 
outside the chip. 

The G-link chipset supports a wide range of serial transfer 
rates ranging from 110 Mbaud all the way up to 1.4 Gbaud. 
This wide range makes it attractive for many types of data. 
Because the -chipset requires no off-package tuned elements 
or adjustments, it can be digitally switched between data 
rates. This is unlike other systems, which require tuned ele 
ments and precise adjustments and operate over very nar 
row ranges of frequencies. Switching between data rates 
aids testing and debugging. It can also be used to establish 
a standard physical layer that spans several operating 
frequencies. 

Generic Data Transport and Proprietary Channels 
The most prevalent application of the G-link chipset is ge 
neric data transport. In these applications, the chipset acts 
as a point-to-point unswitched bus extender, or virtual ribbon 
cable. A great advantage of the G-link chipset is that it auto 
matically handles startup and framing. Once the link is oper 
ating, the user can send data continuously, without having to 
insert extra framing characters or form special packets. Other 
links typically require that special framing characters be 
periodically inserted into the data stream. For systems trans 
mitting data continuously for long intervals, periodically 
inserting these special characters can be difficult and ineffi 
cient. Other link chipsets do not have a built-in hardware 
controller that signals when the link is operating improperly. 
Without these signals the system designer must depend on 
upper-level protocols, resulting in uncertain time delays. 

In many applications, a point-to-point unswitched bus ex 
tender is sufficient. In these applications, the G-link chipset 

Fig. 17. Serial-HIPPI (High- 
Performance Parallel Interface) 
system implemented with the 
G-link chipset. 

is all that is required and can form a complete communica 
tion link. The chipset can also be used in more complicated 
networks because it transports any data format across the 
link. Examples of standard data formats that can benefit 
from a point-to-point bus extender within private networks 
include SONET/SDH, Fiber Channel, and ATM data. SONET/ 
SDH is a telecommunication standard that specifies data 
rates of 155 Mbits/s, 622 Mbits/s, 1.24 Gbits/s, and higher. 
Fiber Channel is an ANSI standard (X3T9.3) that covers a 
variety of data formats and rates. The IEEE 802.6 standard 
is an example of an ATM (asynchronous transfer mode) 
network. 

The flexibility and ease of use of the G-link chipset enable 
it to fit a wide variety of applications. High-data-rate connec 
tions to disks and other peripherals are typical uses. These 
applications benefit from the very low overhead, simple 
operation, and high integration of the G-link chipset. For 
example the HP 271 11A, introduced in 1988, is a fiber optic 
connection for disk arrays at 80 Mbits/s. With the tremen 
dous increase in computing power and I/O rates in the last 
few years, the G-link chipset is well-suited for this type of 
application. 

There is growing interest in using serial links for computer 
backplanes. Computer backplanes are typically jammed with 
hundreds of signals at data rates exceeding 100 Mwords/s. It 
can be difficult to control the skew on parallel data paths at 
high data rates. In addition, transmitting the data in parallel 
can require significant space. Serial links using optical fiber 
or coaxial cable may be the only way to transmit data with 
out degradation by skew, loss, or reflections, while saving 
space. 

Serial-HIPPI 
In May 1991 the G-link chipset was accepted as the basis of 
the Serial-HIPPI standard. Serial-HIPPI is a specification for 
an 800-Mbit/s serial data link that has been agreed upon by 
over 40 vendors and users. Serial-HIPPI transmits data be 
tween HIPPI-PH nodes, up to 25 meters in coaxial cable, or 
10 km with optical fiber. HIPPI-PH is an ANSI standard 
(X3. 183-1991) for transmitting digital data in parallel between 
data processing equipment nodes. It is prevalent in super- 
computing and high-end workstation environments. Fig. 17 
shows a diagram of a complete Serial-HIPPI system using 
the G-link chipset. HIPPI-PH data consists of 44-bit-wide 
words at 25 Mwords/s. This data includes 32 data bits, 4 par 
ity bits, 7 control bits, and the clock. Ahead of the G-link 
transmitter there is an additional circuit called the XMUX. 
This circuit reduces the data from 44 bits to 40 bits by re 
placing two control signals with the chipset's RFD, replacing 
the HIPPI-PH clock with the clock derived from the incoming 
serial data, and encoding three of the other control signals 
into two lines. The XMUX then multiplexes the data 40:20. 
This data is transmitted with the G-link chipset as 40-bit 
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words, in the manner described pre\iously. At the receiver. 
the XDEML'X demultiplexes the recovered data from the 
chipset 20:40. then restores the additional four signals. 

Serial-HIPPI is intended to provide compatibility at the serial 
optical and serial electrical interfaces. Therefore, the G-link 
startup sequence and line code are part of the specification. 
Hewlett-Packard is supplying the G-link chipset. The XMI "X 
and XDEMUX are commercially available. 

SCI-FI 
The G-link chipset was also chosen as the transport mecha 
nism for the SCI-FI (Scalable Coherent Interface-Fiber) stan 
dard (IEEE P1596). SCI is intended to replace traditional 
backplane buses, which are limited in physical length and in 
the number of elements that can be connected to the bus, 
and are limited to only one transaction on the bus at a given 
time. SCI solves these problems using point-to-point com 
munication between nodes. For short distances, data can be 
sent in parallel on metallic conductors. For longer distances, 
better noise performance, and smaller physical size, optical 
fiber or coaxial cable is used to transmit the data serially. 
Data is transmitted as 17-bit words (16 bits plus flag) at 1.25 
Gbaud. No additional circuitry is required assuming that the 
data is already in the P 18 form specified in the standard 
(parallel data, 16 bits plus flag and clock). 

Simplex Applications 
The applications discussed up to now have all been full- 
duplex; there is a forward data path and there is an equiva 
lent reverse data path. This covers the great majority of ap 
plications. However, there are some applications in which a 
particular piece of equipment is primarily a data source or 
sink but not both. 

These applications can be divided into two categories. In the 
first category are systems where data primarily flows in one 
direction, but there is a lower-speed method of communicat 
ing in the reverse direction. An example of this kind of sys 
tem is a video terminal, which might receive a tremendous 
amount of video data and send back only the very low-rate 
typed commands of a user. Fig. 18 shows the G-link chipset 
connected for this type of system. A transmitter at the data 
source is connected with a single fiber to a receiver at the 
destination. The low-speed return path is used to pass only 
the STAT1 indication from the state machine controller at the 
receiver back to the source. This signal makes a transition 
only after power-on, or if lock is lost for some reason. It 
indicates to the transmitter when the receiver is locked and 
ready for data, or if the receiver needs to be sent FF1 to 
become locked. Since this signal changes state infrequently 

Optical 
Transmitter 

RFD 
(Ready 

for Data) 

Low-Speed Data Path 

Fig. video Simplex system with low-speed return path (e.g., a video 
terminal). 

DOUT. 
STRBIN G-Link 

Transmitter 

Crystal 
Oscil lator 

Fig. 19. In a simplex system with no return path, such as a video 
distribution system, the receiver input is automatically switched (by 
the STATl signal) between the external crystal oscillator for frequency- 
lock and the input data for phase lock until the master transition is 
acquired. STROBIN is the transmitter data clock input. DOUT is the nor 
mal transmitter serial data output. LIN is the receiver loopback serial 
data input. DIN is the normal receiver serial data input. STAT1 is the 
receiver state machine status output. FDIS is the receiver frequency 
detector disable input. LOOPEN is the receiver loopback control. 

and its timing is not critical, it can be sent over any available 
return path, possibly over a single dedicated metallic wire, or 
mixed in with other low-speed data on an RS-232 connection 
or telephone line. 

There are a few communication systems that are strictly 
simplex and have no return path at all. These systems are 
inherently problematic for ensuring data integrity because 
there is no way of knowing the status at the receiving end of 
the link. A typical example of this type of network is video 
distribution. Special techniques should be applied when the 
G-link chipset is used for these types of applications. 

A practical and inexpensive solution is shown in Fig. 19. 
Three receiver pins are connected together. This solution 
takes advantage of the G-link receiver's state machine to 
monitor and switch data paths depending on the lock condi 
tions. The only additional component required is an inexpen 
sive is oscillator operating at the frame Tate, which is 
used to frequency lock the receiver VCO. After frequency 
lock, the state machine automatically switches the receiver 
to the data input (LIN) and phase lock takes place. If the re 
ceiver does not lock onto the master transition, internal 
error checking will cause the state machine to reset and 
switch the receiver back to the crystal reference. The small 
frequency differences between the transmit and receive os 
cillators will provide a phase shift that will allow the re 
ceiver to lock onto the master transition correctly. Typical 
lock times will be on the order of a few milliseconds, which 
can be improved if necessary by pulling the crystal refer 
ence slightly off frequency. Lock times under 200 us are 
achievable by adding phase modulation or programmed 
delay in the crystal oscillator path. 

Summary 
The G-link chipset is a highly integrated, compact, silicon 
chipset with features that enable it to serve a number of 
application areas. It performs its own startup and framing. 
This allows a user to transmit data continuously, without 
inserting extra characters, in a virtual ribbon cable mode. 
The chipset includes data available and control word signals 
which allow the creation of simple packets. The chipset ac 
cepts a wide range of input word widths, allowing a good 
match to a variety of computer buses. The wide range of 
serial data rates makes it an ideal transport vehicle for 
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125-Mbit/s FDDI data to 1.24-Gbit/s SONET data. The chip 
set can work in simplex systems, allowing its use for distrib 
uting video. Two widely accepted networking standards, 
Serial-HIPPI and SCI-FI, are tailored to the operation of the 
G-link chipset. The production volume made possible by this 
broad range of applications should make possible truly 
low-cost gigabit-rate data links. 
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