
H E W L E T - P A C K A R D

JOURNAL
O c t o b e r 1 9 9 2

ib 18 92 6 15:46:88.3688563
LB8B9B28Â·19BF, HP 2849BF

H E W L E T T
P A C K A R D

© Copr. 1949-1998 Hewlett-Packard Co.

r H E W L E T T - P A C K A R D

JOURNAL O c t o b e r 1 9 9 2 V o l u m e 4 3 â € ¢ N u m b e r 5

Articles

T h e H P N e t w o r k A d v i s o r : A P o r t a b l e T e s t T o o l f o r P r o t o c o l A n a l y s i s , b y E d m u n d G . M o o r e

N e t w o r k A d v i s o r P r o d u c t E n h a n c e m e n t P h i l o s o p h y

E m b e d d i n g A r t i f i c i a l I n t e l l i g e n c e i n a L A N T e s t I n s t r u m e n t , b y S c o t t G o d l e w , H o d U n v e r r i c h , a n d
S t e p h e n W i t t

T h e U s e r I n t e r f a c e f o r t h e H P 4 9 8 0 N e t w o r k A d v i s o r P r o t o c o l A n a l y z e r , b y T h o m a s A . D o u m a s

. O b j e c t - O r i e n t e d D e s i g n a n d S m a l l t a l k

T h e F o r t h I n t e r p r e t e r

T h e N e t w o r k A d v i s o r A n a l y s i s a n d R e a l - T i m e E n v i r o n m e n t , b y S u n i l B h a t

N e t w o r k A d v i s o r P r o t o c o l A n a l y s i s : D e c o d e s , b y R o Ã ± a J . P r u f e r

M e c h a n i c a l D e s i g n o f t h e H P 4 9 8 0 N e t w o r k A d v i s o r , b y K e n n e t h R . K r e b s

T h e M i c r o w a v e T r a n s i t i o n A n a l y z e r : A N e w I n s t r u m e n t A r c h i t e c t u r e f o r C o m p o n e n t a n d S i g n a l
A n a l y s i s , b y D a v i d J . B a l l o a n d J o h n A . W e n d l e r

F r e q u e n c y T r a n s l a t i o n a s C o n v o l u t i o n

D e s i g n a n d i n t h e M i c r o w a v e T r a n s i t i o n A n a l y z e r , b y M i c h a e l D e t h l e f s e n a n d J o h n
A . W e n d l e r

Editor, Richard P Dolan â€¢ Associate Editor, Charles L Leath â€¢ Publ icat ion Production Manager Susan E Wright â€¢ I l lustrat ion. RenÃ©e D Pighihi
Typography /Layou t , C indy Rub in â€¢ Tes t and Measurement Organ iza t ion L ia i son . J . M ichae l Gospe

Advisory Harry Wi l l iam W. Brown, Integrated Circui t Business Div is ion, Santa Clara. Cal i forniaÂ» Harry Chou. Microwave Technology Div is ion. Santa Rosa, Cal i fornia*
Rajesh Gordon. Divis ion, Systems Divis ion, Cupert ino, Cal i fornia Gary Gordon. HP Laborator ies, Palo Al to, Cal i fornia Â«Jim Grady, Waltham Divis ion, Waltham,
Massachuset ts Man J. Mar l ine, Systems Technology Div is ion, Rosevi l le . Cal i forn ia* Bryan Hoog. Lake Stevens Instrument Div is ion. Everet t , Washington* Roger L
Jungerman, Microwave Technology Division, Santa Rosa, California * Paula H. Kanarek, InkJet Components Division, Corvall is. Oregon â€¢ Thomas F Kraemer, Colorado
Springs Divis ion, Colorado Springs, Colorado Ruby B. Lee. Networked Systems Group. Cupert ino. Cal i fornia* Bi l l L loyd, HP Laborator ies Japan. Kawasaki , Japan*
A l f red Moore, San Ana ly t ica l D iv is ion . Waldbronn. Germany* Michae l P Moore, Measurement Systems Div is ion , Love land. Co lorado â€¢ She l ley I , Moore, San
Diego Worldwide Mowson, San Diego. Cali fornia * Dona L. Morri l l , Worldwide Customer Support Division. Mountain View. Cali fornia * Wil l iam M. Mowson, Open Systems
Software Colorado Chelmsford. Massachusetts â€¢ Sleven J. Narciso, VXI Systems Division, Loveland. Colorado * Raj Oza, Software Technology Division, Mountain View,
California â€¢ â€¢ Tlan Phua. Asia Peripherals Division, Singapore * Kenneth 0 Poulton, HP Laboratories, Palo Alto. California â€¢ Giinter Riebesell. Boblingen Instruments
Division, Saunders, Germany Marc J, Sabatel la, Systems Technology Division, Fort Col l ins. Colorado* Michael B- Saunders, Integrated Circuit Business Division,
Corval l is , For t Phi l ip Stenton, HP Laborator ies Br is to l . Br is to l . England* Stephen R. Undy, Systems Technology Div is ion. For t Col l ins, Colorado* Koichi Yanagawa.
Kobe Instrument Division, Kobe. Japan â€¢ Dennis C York. Corvallis Division, Corval/is, Oregon â€¢ Barbara Zimmer, Corporate Engineering, Palo Alto, California

OHewlet t -Packard Company 1992 Pr in ted in USA The Hewlett-Packard Journal is printed on recycled paper.

2 October 1992 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

72 A Visua l Engineer ing Env i ronment for Test Sof tware Development , by Douglas C. Beethe and
Wi l l i am L Hunt

I Object-Oriented Programming in a Large System

| Deve lop ing an Advanced User In te r face fo r HP VEE, by Wi l l i am L Hunt

I HP VEE: A Data f low Arch i tec tu re , by Doug las C. Beethe

A Per fo rmance Mon i to r ing Sys tem fo r D ig i ta l Te lecommun ica t ions Ne tworks , by G iovann i
Nieddu, Fernando M. Secco, and Alber to Val ler in i

103 G-Link: A Chipset for Gigabi t -Rate Data Communicat ion, by Chu-Sun Yen, Richard C. Walker,
Patr ick T. Petruno, Cheryl Stout, Benny W.H. Lai , and Wi l l iam J. McFar land

| Bang-Bang Loop Analysis

Departments

4 I n t h i s I s s u e
5 Cover
5 W h a t ' s A h e a d

1 0 0 A u t h o r s

T h e H e w l e t t - P a c k a r d J o u r n a l i s p u b l i s h e d b i m o n t h l y b y t h e H e w l e t t - P a c k a r d C o m p a n y t o r e c o g n i z e t e c h n i c a l c o n t r i b u t i o n s m a d e b y H e w l e t t - P a c k a r d
(H P) p e r s o n n e l . W h i l e t h e i n f o r m a t i o n f o u n d i n t h i s p u b l i c a t i o n i s b e l i e v e d t o b e a c c u r a t e , t h e H e w l e t t - P a c k a r d C o m p a n y d i s c l a i m s a l l w a r r a n t i e s o f
m e r c h a n t a b i l i t y a n d f i t n e s s f o r a p a r t i c u l a r p u r p o s e a n d a l l o b l i g a t i o n s a n d l i a b i l i t i e s f o r d a m a g e s , i n c l u d i n g b u t n o t l i m i t e d t o i n d i r e c t , s p e c i a l , o r
c o n s e q u e n t i a l d a m a g e s , a t t o r n e y ' s a n d e x p e r t ' s f e e s , a n d c o u r t c o s t s , a r i s i n g o u t o f o r i n c o n n e c t i o n w i t h t h i s p u b l i c a t i o n .

S u b s c r i p t i o n s : T h e H e w l e t t - P a c k a r d J o u r n a l i s d i s t r i b u t e d f r e e o f c h a r g e t o H P r e s e a r c h , d e s i g n a n d m a n u f a c t u r i n g e n g i n e e r i n g p e r s o n n e l , a s w e l l a s t o
q u a l i f i e d a d d r e s s i n d i v i d u a l s , l i b r a r i e s , a n d e d u c a t i o n a l i n s t i t u t i o n s . P l e a s e a d d r e s s s u b s c r i p t i o n o r c h a n g e o f a d d r e s s r e q u e s t s o n p r i n t e d l e t t e r h e a d (o r
i nc lude the submi t t i ng ca rd) to the HP headquar te rs o f f i ce i n you r coun t ry o r t o the HP address on the back cove r . When submi t t i ng a change o f add ress ,
p l e a s e n o t y o u r z i p o r p o s t a l c o d e a n d a c o p y o f y o u r o l d l a b e l . F r e e s u b s c r i p t i o n s m a y n o t b e a v a i l a b l e i n a l l c o u n t r i e s .

S u b m i s s i o n s : w i t h a r t i c l e s i n t h e H e w l e t t - P a c k a r d J o u r n a l a r e p r i m a r i l y a u t h o r e d b y H P e m p l o y e e s , a r t i c l e s f r o m n o n - H P a u t h o r s d e a l i n g w i t h
H P - r e l a t e d c o n t a c t o r s o l u t i o n s t o t e c h n i c a l p r o b l e m s m a d e p o s s i b l e b y u s i n g H P e q u i p m e n t a r e a l s o c o n s i d e r e d f o r p u b l i c a t i o n . P l e a s e c o n t a c t t h e
E d i t o r b e f o r e a r t i c l e s s u c h a r t i c l e s . A l s o , t h e H e w l e t t - P a c k a r d J o u r n a l e n c o u r a g e s t e c h n i c a l d i s c u s s i o n s o f t h e t o p i c s p r e s e n t e d i n r e c e n t a r t i c l e s
a n d m a y a r e l e t t e r s e x p e c t e d t o b e o f i n t e r e s t t o r e a d e r s . L e t t e r s s h o u l d b e b r i e f , a n d a r e s u b j e c t t o e d i t i n g b y H P .

Copyright publ icat ion provided Hewlett-Packard Company. Al l r ights reserved. Permission to copy without fee al l or part of this publ icat ion is hereby granted provided
t ha t l i t he Company a re no t made , used , d i sp layed , o r d i s t r i bu ted f o r commerc ia l advan tage ; 21 t he Hew le t t -Packa rd Company copy r i gh t no t i ce and t he t i t l e
o f t h e t h e a n d d a t e a p p e a r o n t h e c o p i e s ; a n d 3) a n o t i c e s t a t i n g t h a t t h e c o p y i n g i s b y p e r m i s s i o n o f t h e H e w l e t t - P a c k a r d C o m p a n y .

P lease Jou rna l , i nqu i r i es , submiss ions , and reques ts t o : Ed i t o r , Hew le t t -Packa rd Jou rna l , 3200 H i l l v i ew Avenue , Pa lo A l t o , CA 94304 U .S .A .

October 1992 Hewlett-Packard -Journal
© Copr. 1949-1998 Hewlett-Packard Co.

In this Issue
A protocol analyzer is an inst rument for moni tor ing and interpret ing the data at a
po in t in a data communicat ion network, a long wi th the synchronizat ion, er ror
correct ion, and contro l in format ion that accompanies the data. The def in i t ion of
the correct form for a l l o f th is in format ion is ca l led a protocol , and many d i f fer
ent s tandard protocols ex is t . Trouble on a network is of ten caused by deviat ions
f rom the cor rec t p ro toco l , wh ich may or may no t be caused by hardware fa i l
ures. f ind protocol analyzer is supposed to help the network troubleshooter f ind
such problems and restore serv ice quick ly. In i ts approach to th is task, the HP
4980 Network Adv isor fami ly o f personal -computer -based protoco l ana lyzers
automates much of the work of in terpretat ion and faul t analys is that t rad i t ional

analyzers have le f t to the t roubleshooter , o f fer ing both protoco l commentary and exper t system suppor t
for the Analyzer t ime. Along with the values of various f ields and frames, the Network Analyzer tel ls the user
when a r t i f i c i a l va lues o r f r ame sequences occu r . A bu i l t - i n a r t i f i c i a l i n te l l i gence app l i ca t i on ca l l ed
the Faul t F inder automates the t roubleshoot ing process, us ing the same ru les as exper t t roubleshooters
to invest igate l ike ly causes and zero in on the problem. The ar t ic le on page 6 in t roduces the Network
Advisor, architec the expert Fault Finder system is described in the art icle on page 11. The software architec
ture of general-purpose Network Advisor divides tasks between two environments: the general-purpose environment
(page 21), which implements the user in ter face, and the analys is and real - t ime envi ronment (page 29),
which recognizes data and processes i t in real t ime. The Network Advisor recognizes most major protocols;
i t c a n i t t h e p r o t o c o l b e i n g m o n i t o r e d a n d d o e s n o t n e e d t o k n o w i t i n a d v a n c e . R e c o g n i t i o n a n d
in terpreta t ion of the syntax and semant ics o f the var ious network protoco ls are the tasks of the Network
Advisor 's analyzers faci l i ty (page 34). Here the Network Advisor d i f fers f rom tradi t ional protocol analyzers
both in the number of protocols i t can handle and in i ts abi l i ty to provide not just data but answers to
protoco l prob lems.

The protocol analyzer isn ' t the only approach to mainta in ing the heal th of a d ig i ta l network. Depending
on the type, s ize, and importance of a network, d is t r ibuted moni tor ing may be appropr ia te. The HP Model
E3560 fo r pe r fo rmance mon i to r ing and remote tes t sys tem i s des igned fo r con t inuous su rve i l l ance o f
d ig i ta l te lecommunicat ions networks accord ing to Recommendat ion G.821 of the In ternat iona l Te lephone
and Telegraph Consul ta t ive Commit tee (CCITT). The system prov ides network managers wi th s tat is t ics
that re f lect the qual i ty o f network serv ice and co l lects a larms that s ignal fa i lures in network e lements. I t
scans hierarchy streams at the four main data rates in the European CEPT hierarchy (2, 8, 34, and 140 megabits
per second) , look ing for a larms and b inary errors. The system's demul t ip lex ing capabi l i ty can p ick out
and moni tor lower-rate t r ibutary s t reams wi th in a h igher-rate data st ream. The design of the HP E3560
system is descr ibed in the ar t ic le on page 89.

In the ar t i c le on page 48, the des igners o f the new HP Mode l 71500A microwave t rans i t ion ana lyzer
describe it as "a cross between a high-frequency sampling oscilloscope, 8 dynamic signal analyzer, and
a n e t w o r k o r I n d e e d , i t s b l o c k d i a g r a m d o e s n ' t c o n t a i n a n y e l e m e n t s t h a t a r e n ' t f o u n d i n o n e o r
more this instrument well-known instruments. The contribution of this new microwave instrument is in its archi
tecture, sampling, is, how its components relate to each other, and in its programming. Using periodic sampling,
analog- to-d ig i ta l convers ion, and d ig i ta l s ignal process ing in new ways, i t br ings t ime-domain analys is to
mic rowave component eng ineers who in the pas t have had to re ly p r imar i l y on f requency-domain mea
surements . T ime-domain measurements are par t icu lar ly impor tant in pu lsed-RF and nonl inear dev ice
test ing, al lows the microwave transi t ion analyzer is opt imized for these appl icat ions. I ts archi tecture al lows
i t to make magni tude and phase measurements on RF pulses wi th r ise t imes as fast as 25 p icoseconds.
The ar t ic le on page 48 in t roduces th is new analyzer , demonst ra tes many of i ts new measurements and
appl icat ions, and expla ins the importance of i ts h igh sensi t iv i ty , synthesized sampl ing rate, and stat ionary
sampl ing mode. The design t rade-of fs and chal lenges are d iscussed in the ar t ic le on page 63.

October 1992 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Elect ron ic spreadsheet app l ica t ions le t people express bus iness prob lems in the fami l ia r rows and co l
umns know program to With a spreadsheet program, you don't have to know how to program a computer to
interact diagram, one to solve business problems. For engineers, the analog of the ledger is the block diagram,
and now translate an analog of the spreadsheet program to free engineers from having to translate their
b lock diagrams into unfami l iar computer languages. The HP Visual Engineer ing Environment, or HP VEE,
is a sof tware tool that a l lows users to create solut ions by l inking v isual objects or Â¡cons into block dia
grams. The user se lects objects f rom a menu, l inks them in the way that represents how data f lows f rom
one to ar t ic le HP and then executes the resul t ing block diagram. The art ic le on page 72 explains what HP
VEE does and how i t works. As you might expect , a lot of thought went into making i ts user inter face as
user- f r iendly as possib le, and that ef for t is d iscussed in the ar t ic le on page 78. I ts dataf low archi tecture,
descr ibed on page 84, is an object -or iented implementat ion that s t r ic t ly separates v iews of an object
f rom the under ly ing model .

As fas te r a l ready a re deve loped , fas te r da ta l i nks a re needed to in te rconnec t them. There i s a l ready
a demand Ethernet serial data links capable of gigabit-per-second data rates, 100 times as fast as Ethernet
local Whi le networks and ten t imes as fast as the FDDI f iber opt ic standard. Whi le gigabi t-rate l inks have
been used com long-haul te lephone networks for many years, thei r implementat ion is too cost ly and com
plex 103) computer use. The HP HDMP-1000 gigabit l ink chipset (page 103) is the f i rst commercial ly avai l
able, two-chip, 1.4-g igabi t -per-second, low-cost , ser ia l data l ink in ter face. The G- l ink chipset consists of
a t ransmit ter ch ip and a receiver ch ip and requi res no external par ts or adjustments. The t ransmit ter
accepts paral le l data and outputs ser ia l data to the l ink, whi le the receiver chip reassembles the paral le l
data CIMT inversion other end. Using a special encoding algorithm called CIMT (conditional inversion with mas
ter t rans i t ion) and an on-of f or "bang-bang" phase- locked loop, the ch ipset automat ica l ly mainta ins dc
balance possible the transmitted data and maintains data synchronization. Among its many other possible
uses, data G-l ink chipset has been adopted as the basis for two ser ial data interface standards.

R.P. Dolan
Editor

Cover
The HP 4980 Network Adv isor can be connected to a network l ike any other node to moni tor the heal th o f
the ne twork . Th is rend i t i on dep ic ts a token r ing ne twork w i th severa l works ta t ions and the Ne twork
A d v i s o r w h i c h t o i t . T h e N e t w o r k A d v i s o r i s r e p r e s e n t e d b y a s t a t i s t i c s s u m m a r y s c r e e n , w h i c h
summarizes act iv i ty on the network for a cer ta in per iod of t ime.

What's Ahead
Papers are: product designs and other topics planned for the December issue are:

â€¢ The plotter DesignJet plotter, a large-format inkjet drafting plotter
â€¢ The that SurePlot Plus plot ter , a large-format pen plot ter that features the SurePlot system for

improved drawing re l iab i l i ty
â€¢ A mult iprocessor HP-UX operating system for HP 9000 computers
â€¢ The workstations input/output extension system for HP 9000 Series 700 workstations
â€¢ A methodology for migrat ing appl icat ion software to a cl ient/server, open systems environment
â€¢ Demountable TAB, a new 1C packaging technology for modern digital systems
. 1992 Index.

October 1992 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

The HP Network Advisor: A Portable
Test Tool for Protocol Analysis
This technology protocol analysis tool combines expert system technology
with decodes comprehensive set of network statistics and protocol decodes to
speed problem resolution for token ring and Ethernet networks.

by Edmund G. Moore

Protocol analysis consists of monitoring and interpreting the
data communications protocols on a network. The HP 4980
Series Network Advisor products are protocol analyzers
offering support for both LAN (local area networks) and
WAN (wide area networks) technologies.

The primary users of a protocol analyzer are people respon
sible for maintaining communication networks. These users
fall into two categories: those responsible for maintaining
service within their own company (private network opera
tors) and those who provide service to other companies
(network service organizations). Protocol analyzers are used
to solve the most difficult network problems. Since these
problems account for 20% of all network failures and usually
mean degraded network service, the protocol analyzer must:

Give the user the tools needed to find the problem and
restore service quickly
Be easy to use so that the user does not have to spend time
figuring out how to operate the product
Provide the user with information that is pertinent to solving
the problem.

The HP Network Advisor provides features to satisfy
these requirements.

Main Features
The Network Advisor is a portable integrated test tool that
supports testing of IEEE 802.3 (Ethernet) and IEEE 802.5
(token ring) network configurations (see Fig. 1). The three
product configurations for the Network Advisor are given
in Table I.

Fig. 1. The HP Network Advisor
showing the mainframe and the
folding keyboard and display. The
display shows an example sum
mary statistics screen in which
graphical objects such as bar
charts, pie charts, and gauges are
used to present information.

October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Table I
Ne twork Conf igura t ions Suppor ted

by HP Network Adv isor Produc ts

P r o d u c t s S u p p o r t e d N e t w o r k C o n f i g u r a t i o n s

I E E E 8 0 2 . 3 I E E E 8 0 2 . 5

H P 4 9 8 0 A X X

H P 4 9 8 1 A X

H P 4 9 8 2 A X

The Network Advisor is made up of two physical compo
nents: a PC (personal computer) module and an acquisition
module. The PC contains all the user interface functionality
(keyboard, display, disks, I/O ports). The acquisition module
is a processing system custom designed to meet the data
processing requirements of the network under test.

The measurement focus of the Network Advisor is rapid
problem isolation â€” that is, reducing the time needed to re
store the network to operation. Traditional protocol analyz
ers focus on providing users with accurate information. On
a LAN, this can mean tens of thousands of frames of data.
The challenge for the troubleshooter is to find the frame that
is the root cause of a problem. Users of traditional analyzers
often spend hours examining pages of data looking for a
clue to solve the problem.

The Network Advisor provides the user with not only all of
the network frame data, but also abstracted views of that
data. These views include: statistics, protocol following,
data filtering, protocol commentary, and expert system sup
port. Some of these tools exist in other products. However,
tools like protocol commentary and expert system support
are new to the industry.

Traditionally protocol analysis tools have focused on two
features: protocol decodes and statistics. Protocol decodes
are routines that simply take the protocol header informa
tion in the frames and display this information for the user.
Statistics give the user information on traffic levels used by
the entire network or by individual devices. In the Network
Advisor decodes are improved by interpreting the header
information. Users are told not only the value of a field, but
also the expected value. Additionally, the Network Advisor
keeps track of protocol state information, allowing the Net
work Advisor to tell users when unexpected sequences of
frames occur. Both interpretation and state information are
new features for a protocol analyzer.

Statistics in the Network Advisor are designed to provide
the user with an easy-to-understand summary view of the
network. Using the analysis power of the front end and a
graphical interface, a great deal of information is displayed
in a concise, summary format (see the display in Fig. 1).
Data on network use, errors, traffic, protocol distribution,
and traffic level on selected frames is combined into one
summary display.

Protocol commentary and expert system support are power
ful additions to the protocol analysis toolset. A software

Protocol following is the process of following the state of a connection Examples of states
include essential resequencing data, and reassembling data Protocol fol lowing is essential
for accurate decoding of higher-layer protocols.

application called a protocol commentator observes the
protocols in network frame data and distills the data into
concise events of interest. Expert system support in the Net
work Advisor is provided by an application called the Fault
Finder, which automates the troubleshooting process. Both
of these tools are discussed in the article on page 1 1.

Other Features
Besides the new additions to the protocol analysis toolset
described above, the Network Advisor provides some
traditional protocol analysis features in new ways.

Mechanical and Ergonomic Features. Users of protocol analy
sis tools such as the Network Advisor frequently need to take
the tool to the problem. For this reason portability and rug-
gedness are key features of the Network Advisor (see Fig. 1).
The folding keyboard and display are well-protected. The
instrument has a modular acquisition subsystem and the
assemblies are connected with a single connector. Four
quarter-turn fasteners provide the mechanical connection,
making it easy to change from one network technology to
another in a few seconds.

The Network Advisor is the first HP product to incorporate
active matrix color LCD technology. Color LCD provides the
user with reduced size and weight while providing a bit
mapped color graphics interface. The color LCD was added
very late in the project at considerable risk to product
introduction. The team did it without slipping the product
introduction schedule. Response to the package concept
and especially to the color LCD has been very positive.

The article on page 41 describes the mechanical design of
the Network Advisor.

Use of MS-DOS.Â® The LAN testing market uses products
based on the MS-DOS operating system. The DOS require
ment imposed a performance problem for the design team
because many of the existing DOS-based products could not
match the data integrity goals we had set. The Network Ad
visor design team solved this problem by creating a machine
that has two independent environments: data acquisition
and DOS. The data acquisition module is custom-built to
ensure data integrity under any user network condition. The
DOS module is fully DOS-compatible and provides an excel
lent user interface. The two modules interface using dual-
port memory, which is mapped into the DOS memory space
just like commercial PC I/O cards.

We gained substantial benefits from this dual-module ap
proach. Since our DOS hardware was heavily leveraged, we
needed only one full-time engineer for both hardware and
BIOS development. The architectural split allows us to mix
and match different data acquisition and DOS engines to
create multiple price/performance products easily. Finally,
being fully DOS-compatible allows us to leverage the vast
amount of commercial software available, particularly
communications software.

Data Capture and Run-Time Analysis. Ensuring that all data
from the network can be captured, even under worst-case
loading, is a difficult design task. In addition to data capture,
the front end (data acquisition module) has substantial data
processing requirements. In a general sense, the Network

October 1992 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Advisor is looking at the sum of all network traffic. Analyz
ing all that traffic would require a processing bandwidth that
matches the total processing resources of all networked
elements. Therefore, the worst-case processing load imposed
on the analyzer will always outstrip the ability of the instru
ment to process it. Instead of trying to process all network
traffic, the Network Advisor focuses on processing a subset
of all the network traffic it sees.

As a test tool, the Network Advisor needs to see everything,
but not to process everything. Commercial networking chips
are designed to be used by network nodes and they auto
matically reject input that is outside the specification for the
network. A test tool must see this out-of-specification data
to give the user a complete picture. An HP-developed receive
engine ensures that the Network Advisor provides the user
with all the data associated with an error frame.

User Interface. MS-DOS-based network test products tradi
tionally provide a single task model user interface. This
means that the product allows only one task at a time to
execute. The Network Advisor provides a multitasking, bit
mapped user interface that is mouse- and keyboard-driven.
Users can have multiple tasks executing simultaneously
using a windowing environment. Users can start the traffic
generator (to simulate a problem on the network) while run
ning network statistics (to observe what effect the traffic
generator has) and the network commentator (to be in
formed of any problems that result). All these tasks can run
simultaneously to help solve a network problem.

Product Architecture
As mentioned earlier, the Network Advisor is divided into two
major environments: a general-purpose environment, which
is essentially a personal computer, and a data acquisition,
analysis, and real-time (ART) environment. This division is
applied to the hardware and software architectures of the
Network Advisor.

Hardware Architecture. The general-purpose portion of the
environment contains a 20-MHz Intel386SX microprocessor
with 8M bytes of RAM. The BIOS and support chip set are
from Chips and Technology Company and the disks are
the same ones qualified for use in the HP Vectra PC. The
internal display is VGA LCD, either grayscale or color. Our
objective was to create a PC-compatible machine. Since
the general-purpose environment is a PC, our engineering
investment was relatively small. Leverage of design and
components occurred whenever possible.

The analysis and real-time environment is based on the
AMD29000 RISC chip. RISC technology was selected be
cause of price/performance concerns. We needed a CPU that
would have enough bandwidth to perform our run-time anal
ysis and we needed to provide enough bus bandwidth to do
DMA transfers of all the frames into main memory during
run time. The analysis and real-time environment uses 4M to
16M bytes of memory for program execution and data stor
age for captured frame data. Program and data space uses
2M to 3M bytes of memory. Data acquisition is based on a
programmable front end that uses Xilinx programmable gate
arrays. The front end provides framing, pattern recognition,
run-time pattern matching, run-time frame filtering, statisti
cal counters (e.g., frames per second, errors per second,
etc.), DMA control, and basic node card functionality (to

transmit frames and participate in the network protocol as
needed). The front end is designed to ensure data integrity
in the capture buffer under any network condition, valid or
invalid. The ability to ensure data integrity is an important
feature of the Network Advisor.

Software Architecture. The general-purpose environment was
developed using object-oriented programming. Smalltalk is
the language used. Smalltalk provides multitasking, memory
management, object-oriented design support, and support
for all DOS functions (primarily I/O control). The Network
Advisor's user interface was written in Smalltalk to imitate
the OSF/Motif user interface. l

The software was developed on HP Vectra PCs, making the
port to the target hardware quite simple. Since the software
team was large, a toolset that allowed multiple users to
share the code "image" over a network was employed. This
multiuser tool provided us with a networked development
environment.

The analysis and real-time software was also developed
using object-oriented programming technology, except that
C++ was the language used. Software was developed on the
HP-UX operating system and cross-compiled onto the
AMD29000. Software development for these modules was
also a team effort with the code image residing on a net
worked HP-UX server. The core of the analysis and real-time
code was leveraged from another HP project called CONE
(common OSI network environment).2 CONE is the protocol
kernel used in HP workstations for managing networks. The
capabilities and design of CONE matched the basic tools we
needed for protocol analysis.

The analysis and real-time software is described on page 29.
The software developed to run on the PC and the general-
purpose environment are described on page 22.

Software Management
Except for the DOS BIOS and the analysis and real-time
boot and self-test, which are ROM-based, all the software in
the Network Advisor is disk-based. Having a DOS-based
software system has proven to be a major benefit to product
enhancement and to our customers. During the first year of
the Network Advisor's life, we created three major upgrades,
several bug fixes, and a new leveraged product. Support for
all of these changes was based on shipping new disks.

A DOS-based system does pose some problems. First, there
is a tendency for users to modify the system configuration
to add applications, drivers, and TSRs (terminate and stay
resident programs). Different DOS applications do not al
ways peacefully coexist. In addition to software, the ability
to have different disk drives, different amounts of memory,
and different CPUs creates a matrix of configurations that
can be overwhelming.

Even if the configuration issue is managed, being DOS-
compatible means evolving over time. DOS 5.0 has become
the standard since our release, and in March 1992 we
changed our shipped configuration to be DOS 5.0 with a
single disk partition. We still must support our customers
who still have Network Advisors with DOS 3.3 and multiple
disk partitions. This creates its own logistical problem.

(continued on page 10]

8 October 1992 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Network Advisor Product Enhancement Philosophy

Our intent was to release an initial Network Advisor product with a credible set of
features as quickly as possible. The initial feature set did not provide all of the
capabilities we wanted. It did provide enough capability to solve customer problems.
We wanted to provide releases of additional software on a frequent basis (two or
three times a year). The initial release occurred in July 1991 and since then we have
had new 1992. in November 1991, March 1992, July 1992, and August 1992.
Each release added additional capabilities in all areas of the product including:

Fault Finder. The Network Advisor can do automatic troubleshooting via the Fault
Finder on the following network media:

IEEE 802.3 Media Access Control (MAC) Hardware
IEEE 802.5 MAC Hardware-

Commentators. Commentators provide a high-level abstraction of protocol activity.
Unlike a protocol decode, which displays all of the fields associated with a partic
ular protocol, the commentator reports on the meaning of a frame Â¡n the context of
the service being provided by the protocol. The Network Advisor provides the
following commentators:

Ethernet Novell Commentator
Ethernet ICMP Commentator
Token Ring Commentator
Token Ring Novell Commentator
Token Ring IBM LAN Manager Commentator

Decodes. The Network Advisor decodes most industry-standard protocols. A
decode frame protocol experts to examine the contents of a protocol data frame
in detail. The Network Advisor provides the following decodes:

Ethernet/LLC 802.3
IEEE 802.2 SNAP FLAP Token Ring
IEEE 802.2 Token Ring MAC SNAP
Appletalk Address Resolution Protocol
Datagram Delivery Protocol
EtherTalk Link Access Protocol
AppleTalk Transaction Protocol
Routing Table Maintenance Protocol
AppleTalk Echo Protocol
AppleTalk Name Binding Protocol
Banyan Vines Internet Protocol
Vines Address Resolution Protocol
Vines Routing Update Protocol
Vines Sequenced Packet Protocol
Vines Internet Control Protocol
Vines Interprocess Communication Protocol
DECnet Data Access Protocol
Session Control Protocol
Data Access Protocol
Network Services Protocol
DECnet Routing Protocol
Local Area Transport Protocol
Novell Netware Code Protocol
Sequenced Packet exchange Protocol
Internet Packet exchange Protocol
IBM PC LAN NetBIOS Protocol
Server Message Block Protocol
TCP/IP Telnet Transport Control Protocol
User Datagram Protocol Internet Protocol
File Transfer Protocol
Internet Control Protocol
Address Resolution Protocol
OSI CLNP
OSI ES-IS
OSI TP4
SNA
NetBIOS

XNS Internetwork Datagram Protocol
Sequence Packet Protocol
3COM NetBios Protocol
Server Message Block Protocol

Statistics. The Network Advisor's statistical measurements give the user a
graphical view of critical network performance parameters and network users:

Ethernet Summary Statistics
Ethernet Node Statistics
Ethernet Top Talkers
Ethernet Top Error Sources
Ethernet Vital Signs

Token Ring Summary Statistics
Token Ring Station Statistics
Token Ring Top Talkers
Token Ring Top Error Sources

Canned for Canned tests provide a set of powerful troubleshooting tools for
performing tasks such as testing for connectivity and finding active stations. Many
of the Net tests stimulate the network to simulate network devices. The Net
work Advisor provides the following canned tests:

Ethernet Transceiver Test
Token Ring List Configuration
Report Servers Token Ring List
LAN Managers Token Ring List
NETBIOS Stations Token Ring List
Novell Stations Token Ring List
Ring Error Monitors Token Ring List
Ring Parameter Servers Token Ring List
All Bridges Token Ring List
All Stations Token Ring List
Calculate Ring Length
Token Ring Lobe Test
Token Ring Request Station ID
Token Ring Station Adapter Status
Token Ring Active Station List
Novell Find Nearest Server
Novell Get List of Servers
Novell View Nodes
Novell Server Ping
Novell Node Ping
Novell Determine Connected Networks
TCP/IP ARP Request
TCP/IP Ping

Node nodes The discovery measurement identifies active nodes on the
network by observing network traffic. The measurement can find and display
MAC (media access control) and network addresses. The binding of MAC and
network addresses clearly shows the activity of routers Â¡n the network.
Discovered nodes can be merged into the system nodelist.

WAN Capability. A data acquisition module that contains the HP 4957 WAN
analyzer functionality has been implemented as a PC I/O card. Using the Network
Advisor's DOS capability, this card gives customers WAN support, without any
additional software.

FDDI interfaces A data acquisition module is available that interfaces to FDDI
(fiber the data interface) networks. This module was implemented Â¡n the
same spirit as the IEEE 802.3 and 802.5 modules â€” ensure data integrity under any
network condition.

Disk and During development, we had planned to use 40-Mbyte and
80-Mbyte hard disks. However, by the time we introduced the product, typical disk
densities for PC hard disks had changed (50 Mbytes to 105 Mbytes were typical
sizes). We switched to 80-Mbyte and 160-Mbyte disk drives during the first year.

Intel486 CPU. We created an Intel486 version of the CPU to keep current with
CPU technology. The Network Advisor has been designed to allow adaptation to
new CPU and I/O technologies.

October 1 i)!C I Icwlctl-I'ackanl .Journal 9

© Copr. 1949-1998 Hewlett-Packard Co.

Conclusion
The Network Advisor has created a new standard in the
LAN test marketplace. It is a tool that not only collects and
supplies users with network traffic data, but also extracts
pertinent answers from the volumes of data. As a DOS-
based system, the Network Advisor offers compatibility,
flexibility, and a clear path for evolution. As an instrument,
the Network Advisor offers unprecedented performance in
data capture and analysis and brings HP quality and data
integrity to the LAN marketplace.

References
1. A. Deininger and C. Fernandez, "Making Computer Behavior
Consistent: The HP OSF/Motif Graphical User Interface," Hewlett-

Packard Journal, Vol. 41, no. 3, June 1990, pp. 6-12.
2. S. Dean, D. Kumpf, and H. Wenzel, "CONE: A Software Environ
ment 41, Network Protocols," Hewlett-Packard Journal, Vol. 41,
no. 1, February 1990, pp. 18-28.

HP-UX Â¡s based on and is compatible with UNIX System Laboratories' UNIX* operating systerr
It also specifications with X/Open's* XPG3. POSIX 1003.1 and SVID2 interface specifications
UNIX in other registered trademark of UNIX System Laboratories Inc. in the U.S.A and other
countries.
X/Open is a trademark of X/Open Company Limited in the UK and other countries.

MS-DOS Â¡s a U.S. registered trademark of Microsoft Corporation

10 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Embedding Artificial Intelligence in a
LAN Test Instrument
The knowledge and processes used by a skilled LAN troubleshooter are
built into an interactive expert system application that runs on HP 4980
Series Network Advisor protocol analyzers.

by Scott Godlew, Rod Unverrich, and Stephen Witt

The capabilities of artificial intelligence techniques are pro
vided in the HP 4980 Series Network Advisor protocol ana
lyzers by a software application called the Fault Finder. It is
a rule-based expert system that is built around a blackboard
architecture.1'2 The rules, written in PROLOG,3 invoke Net
work Advisor measurements (statistics, decodes, and ap
plications) that are available to the user. The Fault Finder
allows the user to control and view the troubleshooting pro
cess at a detailed single-step level or at a fully automated
level. It also includes an explanation facility that describes
the logic used to solve a specific problem, a definition of the
problem, and a description of the actions required to remedy
the problem.

This article will discuss LAN troubleshooting, automated
troubleshooting using expert systems, the Fault Finder, the
architecture of the Fault Finder, and a typical problem
solved using the Fault Finder on a token ring network.

Expert troubleshooters use a paradigm of making observa
tions, forming hypotheses, and proving or disproving those
hypotheses until a problem is found (see Fig. 1). The Fault
Finder uses this same paradigm. A description of how this
model is employed by the Fault Finder is mentioned
throughout this paper.

LAN Troubleshooting
For the last ten years LAN (local area network) trouble-
shooters have relied on LAN protocol analyzers that provide
a variety of decode measurements, statistical measure
ments, and active measurements. This is a manual process
that depends on the user's knowledge of the instrument, the
network, and typical problems that occur on that network.
These analyzers require a user to interpret results and select
subsequent measurements.

LANs provide high-speed packet switching within buildings
or campus facilities. They include CSMA/CD baseband net
works, token ring networks, and broadband networks. This
paper addresses Ethernet (IEEE 802.3) and token ring
(IEEE 802.5) networks. LANs are challenging in their trou
bleshooting requirements because they operate at high
speed, problems emerge and escalate in real-time, and the
environment is very complex. Problems can result from
poorly architected networks, improper device configura
tions, faulty cabling or connections, broken devices or
printed circuit cards, or incompatible software. A typical

LAN can have several network operating systems and proto
col stacks. Troubleshooting a network problem requires
integrating pieces of data or clues from a variety of sources
and using the acquired data to hypothesize and prove prob
lems. Problems that do not cause hard failures but instead
only cause performance problems may often go undetected.

Network diagnostic tools have evolved in the same way as
networks. Early diagnostic tools included workstation utili
ties, cable measurement instruments, and simple protocol
analyzers that provided decoding of protocol packets. Net
work troubleshooting requires sequencing through different
measurements, using the results of one measurement to
select and program the next measurement. As networks
became more complex, the problems became more com
plex. This increasing complexity created a need for more
sophisticated tools to enable network managers to solve
problems rather than relying on hit or miss solutions, or in
some cases simply living with the problem.

Network managers and technicians solve many problems by
relying on knowledge of their specific network and its com
ponents and by relying on their troubleshooting experiences.
For example, a network technician can quickly identify a
misconfigured node card by observing the card's receiver
congested soft-error frames on the token ring network.

Expert troubleshooters use a mental model or paradigm for
troubleshooting. Some perform this at a decidedly conscious
level by diagramming the troubleshooting process. Others
perform it subconsciously, following "what feels right." In
either case the same basic process is used. They start by
making observations of the situation. It doesn't matter what
problem is being solved, be it a ruptured appendix, a faulty
carburetor, or a duplicate IP address â€” all troubleshooters
(doctors, auto mechanics, and network managers) use the
same process. They use these observations to formulate

M a k e
Observations

Form
Hypotheses

No
(Disproven)

Fig. 1. The observe, hypothesize, and prove (or disprove) trouble
shooting process used in the Fault Finder.

October 1992 Hewlett-Packard Journal 1 1
© Copr. 1949-1998 Hewlett-Packard Co.

hypotheses of what problems might exist. Then they per
form tests to prove or disprove the hypotheses. Finally, once
a problem is proved they remedy the situation. This model is
shown in Fig. 1.

Protocol analyzers offer a variety of measurements for solv
ing problems. Decodes provide descriptions of individual
packets on the networks. Statistical measurements provide
overviews of network trends such as utilization, errors, and
protocol use. Individual applications provide utilities for a
variety of functions such as creating an active station list,
reading the status of network adapter cards, and testing the
media. These are powerful tools in the hands of an expert.
However, these analyzers have two major shortfalls. First, to
solve difficult problems an expert user is usually required.
Second, they require human intervention and cannot com
plete the troubleshooting task in an automated fashion. Arti
ficial intelligence offers a desirable solution to both of these
problems. It allows an analyzer to monitor the network con
tinually for problems and log the results for later perusal by
a network manager. It also provides the means to build the
knowledge of many troubleshooting experts into a tool that
is widely available to network managers.

Automated Troubleshooting Using Expert Systems
Artificial intelligence (AI) solutions that are declarative in
format and conventional solutions that are procedural in
format can be used together to solve networking problems.
Expert systems (one branch of AI), in a broad sense, are
programs that are designed to behave as a human expert in
a particular field. Expert systems are particularly useful for
problems like networking in which complete information
about a problem is not known when the program begins
execution. Expert systems gather additional, pertinent in
formation as they execute. Conventional, procedural pro
grams usually execute in a sequential fashion through a set
of troubleshooting trees and can take more time and execute
incorrect branches. Expert systems gather information after
an event and use it to explore multiple problems in parallel.

The requirements for an expert system troubleshooting tool
are somewhat diverse. First and foremost the expert system
must discover network faults and make observations about
the network. A primary goal is to diagnose common network
problems quickly, allowing the human user to concentrate
on more difficult and obscure problems. To do this, the ex
pert system must be cognizant of the network structure, the
protocol environments, the diagnostic tools available, and
the troubleshooting methods that will solve the problem
quickly. Thus, an expert system tool for network trouble
shooting must be able to do the following:

â€¢ Measurement Interface:
o Perform diagnostic functions such as generating station

lists, testing connectivity, and performing loopback tests
o Confirm the existence of a hypothesized fault by executing

active measurements such as token ring station adapter
status

â€¢ Automated Operation:
: Monitor the network for real-time problems as opposed

to gathering information and postprocessing it in a batch
fashion

â€¢ In the a of computer programs, procedures tel l a system speci f ical ly how to do a task
and declarations tell a system generally what to do.

Execute in an automatic, unattended fashion to solve
intermittent faults, monitoring suspect rings or segments
continuously

> Ease of Use:
Provide the user with an interpretation of data by suggest
ing actions, drawing conclusions, and explaining advice
Provide an audit trail of suspected problems, measure
ments executed, and problems found to educate the user
and to suggest possible problems that the expert system
could not solve
Generate alarms and log data to notify the user of proven
faults and provide the necessary information to prove that
the problem exists
Incorporate user inputs by including information that
the user already suspects about the network (such as
performance problems)

Topology:
Gather and incorporate network topology information
Gather error information that is being reported on the
network and learn about the configuration of the network
Gather and incorporate network baselines to determine
what is normal behavior on the network and compare the
current operation against normal behavior.

It is critical that an expert system that augments a user's
troubleshooting methods behave in a manner that the user
can understand. Making observations, forming hypotheses,
proving faults, and determining actions to take are critical
troubleshooting steps that a network manager can under
stand and relate to.

Note that expert system tools could also be used to optimize
performance, analyze network accounting information, per
form network management functions, audit for security
violations, and provide information for network planning.
However, in this article we are only concerned with an ex
pert system tool whose purpose is to diagnose operational
faults on a local ring or segment of the network.

The Fault Finder
The Fault Finder is an expert system that executes as a soft
ware application on the Network Advisor family of prod
ucts. It uses troubleshooting methods that are modeled after
expert users in the field, applying knowledge of known net
work problems. It programs and executes measurements in
the same way that an expert user would, taking advantage of
the powerful measurement set of the Network Advisor.

The Fault Finder was designed to provide the user with a
high degree of interaction with the instrument and a detailed
view of the activities of the Fault Finder as it attempts to
solve a problem. This was considered critical because many
network problems cannot be diagnosed to completion. In
these cases it is important to give the user an audit trail and
provide as much information as possible that might be perti
nent to solving the problem. For example, suppose the Fault
Finder suspects a broken transmit wire on a network inter
face card with address 10005A74624A, but this suspicion
proves to be false. The fact that the Fault Finder was inves
tigating a potential problem on a certain station on the net
work might be of interest to the network technician. The
technician might be able to correlate the Fault Finder data
with previous troubleshooting data and use this synthesis of

12 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

information to solve the problem. In addition to suspected
problems, the Fault Finder records measurements it has
executed. Such information may help an expert hone in on
the real problem. This audit trail can also be used as an
educational tool by the no\ice troubleshooter.

The Fault Finder's main screen has three tiles that map
directly to the observations, hypotheses, and proven faults.
which are the mainstays of the expert's troubleshooting pro
cess (see Fig. 2). The Fault Finder starts by running mea
surements that provide observations for the troubleshooting
process. These observations are posted to the first window.
The rules in the knowledge base are executed and hypothe
ses are formed. For example, if a statistical measurement is
run that observes that the rate of broadcast frames on an
Ethernet network exceeds a baseline, the Fault Finder will
hypothesize several possible problems including a duplicate
IP address and a misconfigured IP broadcast address. The
Fault Finder will then perform further measurements such
as a ping (internet control message protocol (ICMP) echo
request) or an IP (internet protocol) decode to determine
whether a problem exists. If the problem exists, it is posted
to the Faults Found window, the window is turned red, and the
user is notified with an audible alarm.

The user can run the Fault Finder in several different modes.
The single-loop mode runs once through the possible fault
indicators looking for problems. It follows all results to a
conclusion and then stops. The Fault Finder can run in a
continuous-loop mode in which it repeatedly cycles looking
for faults. The Fault Finder will also accept user symptoms
to allow the user to direct the search by including what is
already known or suspected about a network fault. Possible
symptoms include poor performance, cannot connect, and
suspected Novell problems. These symptoms cause the Fault
Finder to focus its search initially on suspected problem
areas. When appropriate, the Fault Finder will request the user

to input the results of cable scanning measurements to aid
in diagnosing physical media problems.

The Fault Finder accesses Network Advisor measurements
in the same way that the user would. For manual use the
user is presented with a window containing a list of all the
Network Advisor measurements sorted by categories. The
Network Ad\isor allows the user to select multiple measure
ments and execute them simultaneously. Each measurement
includes a parameterization window for setting up the con
figuration. For example, a ping measurement requires the
user to specify the internet addresses for the Network Advi
sor and the target node for the ping, and the timeout value
(see Fig. 3). The Fault Finder automatically selects measure
ments, provides parameterization, executes the measure
ments, and obtains the results. A user performing this task
manually can often make a mistake, which can lead to a
false diagnosis and many hours of invalid and frustrating
troubleshooting.

Network troubleshooting depends on the concept of under
standing normal behavior on a network and comparing the
observed results with the normal expected behavior. The
Fault Finder uses this same approach by keeping a baseline
file that documents the expected values for the measure
ments to compare with the actual results. Each measurement
compares its actual results against the expected results in
the baseline file.

The Fault Finder uses prioritization and certainties to guide
itself are the troubleshooting process. Prioritizations are
implemented by assigning a severity and a frequency to each
problem. This means that the Fault Finder will pursue more
serious problems first. For example, a broken file server is a
more serious problem than a broken node and will be inves
tigated first. Certainties refer to the confidence levels as
signed to the Fault Finder's results. Each Fault Finder result

09:48 02/24/9? Â©1991 Hewlett-Packard. VIO
Faul t FÃ¯ nder*

-B: Resetting

H' Beacon

Observations

Ã­ Warning] Fefa 246 9:45:42.73709%

rnLERT) Feh 241Â» 9:45:43.696485

Fig. 2. Fault Finder windows.
Each window represents a stage
in the troubleshooting process.

October 1992 Hewlett-Packard Journal 13
© Copr. 1949-1998 Hewlett-Packard Co.

15.6.73.2B1 88-00-09- 18-DC-B7

15.6.73.281 88-00-09- ia-DC-07

IS. 6. 73. 201 88-00-09- 10-DC-07

3 msec 382 bytes

3 msec 302 bytes 2

3 msec 302 butes 3

 P I N G S t a t i s t i c s

Transmitted Packets = 4 Received Packets - 4

m in/avcy/nax - 3/3/3

Configure For: PING

Target Address

Sender Address

Packet 2>ata Siz

T i Meout < HS>

Hunker Packets

1 5 . 6 . 7 3 . 2 8 1
I ^ o d e / S t a t i o n L i s t
Â¡Dave

J U
ipctdlb

IBM 3098
IBM 3278
I OP
IT Server

Mor*

is rated as low, medium, or high (see the [High] designation
given to the fault found in Fig. 2). Problems (faults) that can
be conclusively confirmed are given a high confidence and
problems that might be one of several possibilities and can
not be diagnosed further are assigned a low confidence.

The Fault Finder provides the user with a very fine level of
control over the troubleshooting process. Allowing the user
to interact with the Fault Finder was a key design objective.
Expert systems that appear as a black box to the user are
not appropriate for interactive network troubleshooting.
The Fault Finder normally runs in an automatic mode cy
cling from observations to hypotheses to proven faults. This
is very useful for verifying the normal operation of the net
work, or for a mode of debugging in which the user might
look for intermittent problems on a network before they
become catastrophic and degrade the network. The Fault
Finder also provides several manual modes of debugging,
which are useful for reactive troubleshooting to investigate
specific failures.

Once the Fault Finder has executed and discovered a fault
on the network, the user must perform the final step of
troubleshooting â€” correcting the fault. Simply identifying the
fault is not enough if the user does not know how to remedy
the problem. The Fault Finder includes a comprehensive
explanation facility that explains the troubleshooting pro
cess and describes the actions to be taken to fix the prob
lem. Any line entry in any of the three tiles can be high
lighted and selected to invoke the explanation facility. The
explanation facility is implemented via the knowledge base.
Each entry includes a definition, a reason, and an action.
Fig. 4 shows an explanation window that explains the neces
sary action to fix the problem of a station inserting in the
network at the wrong speed.

Fig. 3. Ping measurement
window.

Fault Finder Architecture
The Fault Finder architecture (see Fig. 5) was designed with
four main objectives. First, the Fault Finder must be able to
operate the instrument in place of the user (the network
manager). This means that the Fault Finder needs to initiate
and receive results automatically from instrument measure
ments in a knowledgeable way. Second, the Fault Finder
must actively detect and investigate faults in a manner that
will allow users to accept its conclusions and understand its
actions. Third, the Fault Finder must be able to support
knowledge about multiple protocol domains and adapt to
varying target networks depending on the needs of our cus
tomers. Finally, an inability to complete the diagnosis of one
potential fault should not prevent the diagnosis of other
potential faults.

The inference engine provides the core knowledge process
ing capability and sets the stage for relating the other com
ponents in terms of their ability to provide information to
support inferencing. The blackboard provides a mechanism
for allowing multiple sources and sinks of information to
cooperate and allows the user to get information about how
data is synthesized in the Fault Finder. Measurements and
user input provide two examples of information source
modules that are not knowledge-based, but procedure-based.

Inference Engine. An inference engine executes knowledge
about a particular domain. During execution, high-level in
formation is synthesized from measurement data, user input,
and the knowledge base. The synthesis can be driven by the
need to use the high-level data for some other purpose or
the availability of sufficient lower-level data to complete the

Sources generate information and sinks receive information.

14 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

TJ2/H73?- ; 1991 Hewlett-Packard. U LO
.dr

Obs Â« rv Â» t i on s

tUarninal Feb 24S 9:45:42.7378996

tning
I-R: Streaming Beacons
f-H: Hnnitnr Crmtunt. < nn

E ALEnT 3 Feb Â¿4tf *Ã­ â€¢ 4b 'â€¢ 4 J . 84VÂ¿
[ALERTI Feb 248 9:45:44 .1872499
[Mn-Mll

Â»"9
S t * t i r

s jr

P o s s i b l e F a u l t s

t o o l o n g ^
MAir h^vp Â« KrriknnXshnr' t . r tH trÂ«

F a u l t F i n d l e r E x p l a n a t i o n f o r - :

:heck the settings on the network interface card on

stations between the indicated fault domain. After

nf iguring the network interface card correctly,

-cycle the station power. For example, on a INI

token- R ing Network 16^4 Adapter (Network Interface

Card), check the settings of the dip switches. Dip

itch 12 should be set to the appropriate data rate

^ J Reasoning

W^* Actions

Knowledge

I M H I 1 1 1 S t a t i o Ã ¯ t i n s e r t i i i g a t t h e u r o n y n e t u o r k s p e e d i n t h e F a u I t n a n a i t
High] Connectivity test of station '
[High] Connectivity test of station 'â€¢

MTXJI ! O
Fig. 4. Fault explanation window.

synthesis. In either case, the knowledge that is executed
describes how the synthesis takes place.

The Fault Finder uses a form of knowledge representation
known as rules. These rules describe the necessary state of
information to be able to synthesize higher-level informa
tion. The rules in the Fault Finder have the following three
main parts:
The consequent (describes the information to be synthesized
by the rule)
The antecedent (describes the required preconditions that
will allow synthesis to occur)
The parameters (constrain how the inference engine is
allowed to use the rule).

The following rules are used to identify a station inserting in
the network at the wrong speed. These rules show the con
sequent, the problem definition, and the antecedent, which
includes the preconditions (forward chaining) that must be

Requests
and

Responses
Control

Inference
Engine

Results

Rules
Instrument

Measurements

Fig. 5. The Fault Finder's architecture.

satisfied and the information needed to prove (or disprove)
the hypothesized problem (backward chaining).

Â¡Problem description

problem!
name(Inser tWrongSpeedProb lem)
n lsName(' Inser t ing Wrong Speed ')
eventType! #FaultEvent)
f requency! 50)
severity! 50)
de f in i t ion ! 'S ta t ion inser t ing a t the wrong speed means the network

in ter face card (NIC) is not conf igured to the proper data
rate for the at tached local r ing. ')

so lu t ion) 'Check the set t ings on the network in ter face card on the
s ta t ions be tween the ind ica ted fau l t domain . A f te r conf igur ing
the ne twork in te r face card cor rec t l y , re -cyc le the s ta t ion power .
For example, on an IBM Token Ring Network 16/4 Adapter
(Network In ter face Card) , check the set t ings o f the d ip swi tches.
Dip swi tch 12 should be set to the appropr ia te data rate (4 Mbps
dip swi tch On and 16 Mbps dip swi tch Off) . ')

hypoText ! 'S ta t ion may be inser t ing a t wrong network speed in domain
o f %?%address% and %?%addressNAUN%. ')

concText ! '%+%Stat ion inser t ing a t the wrong network speed in the fau l t
doma in o f %%?+%addressNAUN%%+% and %%?+%address
%%+%.%%-%Station
not inser t ing a t the wrong speed in the fau l t domain o f
% % ? ~ % a d d r e s s N A U N % % - % a n d % % ? - % a d d r e s s % % - % . % ' I

parameters !
[address #node /hypothes is " "]
[addressNAUN #node /hypo thes is " "]

)
)

Â¡Forward Chaining Rule

hypothesize!

J h e s e a r e p a r a m e t e r s
name! hWrongSpeed)
cost! 50)

October 1992 Hewlett-Packard Journal 15
© Copr. 1949-1998 Hewlett-Packard Co.

conf idence! 100)
exp lanat ion! ' I f a s ta t ion fa i ls to inser t onto the loca l r ing proper ly ,

then i t i s poss ib le the s ta t ion 's ne twork in te r face
card (NIC) is set to the wrong speed. ' I

l og i cTex t ! ' I nse r tWrongSpeedProb lem! ?address ?addressNAUN) : -

Â¡Antecedent
beacon ingMon i to r ! useBase l i nes ? t ime ?beaconAddress

? b e a c o n A d d r e s s N A U N)
pe r f o rm ! ? tmp1 ?s t "a t : pu t : " # l ancTokenR ingLas tBeacon ingAdd ress

?beaconAddress)
per fo rm! ? tmp2 ?s t "a t :pu t : " # lancTokenRing l_as tBeacomngAddress

N A U N ? b e a c o n A d d r e s s N A U N)

s t reamingBeaconsMoni tor ! useBase l ines ? t ime ?beaconSt reamAddress
7beaconS t reamAdd ressNAUN ?)

newAc t i veMon i t o r l useBase l i nes ? t ime 7add ressAc t i veMon i t o r
? a d d r e s s N A U N a d d r e s s A c t i v e M o n i t o r ?)

topo logy (asTokenRingNode [?addressSt r] ?address)
topo logy (asTokenRingNode [?addressNAUNSt r] ?addressNAUN)

s topAI IMeasO

)

Â¡Backward Chaining Rule

backward)

name ! cWrongSpeed)
cost! 50)
conf idence! 100)
exp lanat ion! ' I f a s ta t ion fa i ls to inser t onto the loca l r ing proper ly ,

then i t i s poss ib le the s ta t ion 's ne twork in te r face
card (NIC) is set to the wrong speed. The inser t ing
s ta t ion wi l l a t tempt the inser t ion, but w i l l be unable
to synchron ize w i th the incoming s igna l and there fo re
remove i tse l f f rom the loca l r ing . The s ta t ion may
t ry mul t ip le inser t ions be fore remov ing comple te ly . ')

Â¡Consequent
logicText! ' InsertWrongSpeedProblem! ?address ?addressNAUN) :â€¢

Â¡Antecedent
mdbParm (txMeasT imeout ? txT imeout)

per fo rm (?addressSt r ?address tokenRingAddress)

adapterMeas! ?addressSt r ? txT imeout ? resu l t1)
s ize(?result1 ?resultSize1)
gt l ?resultSize1 0)

pe r fo rm (?addressNAUNSt r ?addressNAUN tokenR ingAddress)

adap te rMeas ! ?addressNAUNSt r ? txT imeou t ? resu l t2)
s ize! ?result2 ?resultSize2)
g t (? resu l tS i ze20)

The Fault Finder rules are modeled after PROLOG, so the
consequent is simply a predicate that represents the goal or
information to be synthesized. The predicate has a name
that represents the type of information being synthesized
and parameters that determine the specific information. For
example, in the rule cWrongSpeed the predicate InsertWrong
SpeedProblem tells us if the wrong speed is set on the adapter
card at some address. This would be synthesized by gather
ing data via the antecedent predicates and incorporating this
data into the consequent.

In the antecedents of the example rules, the conditions are
simply ANDed together. Like IF statements in most program
ming languages, other logical operations can be performed.
The inference engine allows patterns to be specified in place
of constants, and the condition may succeed multiple times
depending on how many pieces of information match the
patterns. This allows knowledge to be represented in a gen
eral way, without knowing ahead of time how many situa
tions might meet the criteria or the specific names or values
of parameters.

The execution of a rule can be driven by forward or back
ward chaining operations. In forward chaining, the inference
engine is presented with one or more network conditions
(e.g., network is sluggish). This data will drive the execution
of rules that depend on this data. In backward chaining, we
start with a result or conclusion to be proved true or false
(e.g., station inserting at the wrong speed) and work back
through the rules (gathering information along the way) to
find the problem or condition causing the given result.

Blackboard. The blackboard allows multiple modules
(sources and sinks of data) to work together. It also main
tains an information structure that allows greater accessibil
ity and storage of history data about how the information is
synthesized or generated.

The blackboard serves as a clearing house for all informa
tion in the Fault Finder. It determines which module should
be called to perform further information synthesis or data
generation. When a module needs information to complete
its synthesis, the module requests the information via the
blackboard, and the blackboard determines which module
can act as a source for that information. When data becomes
available asynchronously, the data is distributed to those
modules that could perform further synthesis based on the
data. The modules are responsible for notifying the black
board of their specific needs.

Requests and Responses. In the Fault Finder's blackboard,
requests for information are posted to initiate information
synthesis. For example, if we want the Fault Finder to deter
mine if a particular fault exists, a module will request infor
mation about the fault's existence and then direct the Fault
Finder to prove (or disprove) the fault. When the Fault
Finder is observing the network, it may, on its own, decide
to determine if a fault exists. The conditions that indicate
the possible existence of a fault cause a request to be placed
on the blackboard.

Responses are the result of investigating a request. When a
module completes processing a request, one or more re
sponses are placed on the blackboard. Multiple matches of a
pattern can generate more than one response. Each response
has a level of certainty associated with it, which is deter
mined from the certainty of the information it is based on
and the confidence of the rule used to perform the synthe
sis. In the end, a fault diagnosis can be weighed against
other faults to determine a priority for correcting the faults.

Hierarchical Data Abstraction. By tracking requests and re
sponses exchanged via the blackboard, a hierarchy of infor
mation created by the system can be maintained (see Fig. 6).
The hierarchical orientation of the information facilitates
both usability and programmability of the system.

1 6 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

' M e a s u r e m e n t
Execution

'User Input

'Requests or Responses

Fig. 6. and data abstraction built by tracking requests and
responses.

Usability is enhanced by using the hierarchy to demonstrate
to the user the steps taken to reach a conclusion, allowing
the user to examine why a request was made in the first
place. The modules that post requests and responses on the
blackboard are required to provide human readable explana
tions related to these postings. The explanations include
how the information was generated, what the information
means, and in some cases, what can be done about some
problematic situation. Because users have control over what
level of decomposition they desire to see, the hierarchy also
protects them from the need to look at all of the details of
the diagnosis. The user can select an interesting high-level
item and pursue some of the low-level details of that item.

The hierarchy is designed to eliminate dependencies between
modules. This enhances the ability of knowledge engineers
to represent knowledge in a way that is reusable and main
tainable. Information from one source can be used by a vari
ety of sinks that synthesize additional information. If a bet
ter way of generating the information is determined, the
source can be changed without having any impact on the
sinks. This will allow the product to evolve over time as
our understanding of the problem improves and as other
capabilities of the product evolve.

Procedural versus Declarative. The inference engine provides
an environment for executing knowledge about diagnosis.
This knowledge is represented in a declarative form using
rules. The rules represent relationships between facts that
transcend the procedures for proving those facts. However,
parts of the diagnosis process require the ability to represent
the procedural aspects of diagnosis explicitly. A procedural
representation can be thought of in terms of a program writ
ten in a language such as C, Pascal, FORTRAN, and BASIC.

In the Fault Finder, the instrument measurements and user
inputs represent procedural components of the network
diagnosis process. The measurements embody complex pro
cesses for gathering data about the network. The user inputs
allow the user to perform a procedure that is not easily auto
mated. The modules that provide this procedural capability
have been designed to interface with the blackboard in the
same way as the inference engine.

Measurements. When a request for data on the blackboard
can be satisfied by running an instrument measurement, the
measurement is initiated and its results are posted on the
blackboard. A simple example would be running an adapter
status measurement. The data requested is the status of a
particular interface card or the ability to contact the node
associated with the card. The blackboard forwards this re
quest to the measurement module where the adapter status
measurement is handled. The result of running the measure
ment is that the status and the basic ability to communicate
with the node are posted as responses on the blackboard.

When the results get posted, other modules that need this
information can proceed with the synthesis of additional
information. For example, the failure of a token ring station
adapter status may be just one of the conditions of a rule
that diagnoses some fault. When the station adapter status
results are received by that rule, the rule may proceed with
evaluation of the remaining conditions.

User Input. User input is handled very similarly to measure
ments. When information is requested from the blackboard
that the user input module is capable of generating, the
blackboard passes the request to the input module handling
the user request. A description of the information and how
to determine the correct response is provided as part of the
user interface interaction. The user will perform the proce
dures required to determine the correct response and then
enter or select an answer. The module that requested the
information will then proceed with its synthesis.

Flow of Control. To satisfy the design objectives stated earlier,
the flow of control within the system must be carefully con
trolled. The inference engine has a number of control flow
characteristics that can be controlled including forward and
backward chaining, cost and confidence parameters for
rules, and the urgencies of requests placed on the black
board. One of the key characteristics of the inference engine
is its ability to suspend threads of inference while some of
its requests are blocked to pursue other threads of inference.

Multithreaded PROLOG. When the inference engine requests
information from the blackboard, there is no guarantee that
the information will be available or that the request will be
immediately selected as the next request to satisfy. The in
ference engine must be able to suspend its inferencing re
lated to a request until the response is available. Also, while
waiting for a response, the inference engine must be able to
initiate other chains of inference to satisfy other requests it
receives.

To make this possible, the blackboard allows context infor
mation to be stored with each request. This allows a request
er to resume synthesis when the requested data becomes
available. When the blackboard notifies a module with the
new information, the context information is returned to the
module. For cases in which multiple responses match a re
quest, the context information is copied to create an equiva
lent but separate context for each response. This allows all
of the backtracking capability of PROLOG to be provided in
the blackboard environment. The context information also
helps when presenting explanations to the user.

October 1992 Hc-wlctl-i'ackanl Journal 17
© Copr. 1949-1998 Hewlett-Packard Co.

Prioritization. When modules request information from the
blackboard, an urgency level is associated with the request.
When the request becomes the one with the highest urgency,
a module is selected to satisfy the request. The module with
the lowest-cost technique for satisfying the request is selected
as the exclusive provider of the response. Rules have mech
anisms for passing default urgencies for new requests or for
increasing or decreasing the urgencies of new requests. Other
modules can set the appropriate urgency of requests for
their form of synthesis. Each module must be capable of
providing an estimate of its cost for any given request.

Tying Components Together. The inference engine is the key to
enabling the Fault Finder to operate the instrument in place
of a human user. The rules in its knowledge base represent
the ability to perform a diagnosis of some fault in a network.
The inference engine requests information from the black
board and causes measurements to be executed or user input
to be solicited.

The blackboard is the key to operating in a manner that is
understandable and justifiable. Information is stored that
allows the user to understand how information is synthe
sized and why any particular step was taken. The hierarchi
cal nature of the data allows the user to control the amount
of information being presented.

The inference engine and the Network Advisor measure
ments allow the Fault Finder to adapt to a variety of proto
col domains. A knowledge base with rules about Ethernet is
combined with a measurement set for Ethernet to allow the
Fault Finder to find faults on Ethernet networks. The same
is true for token ring, TCP/IP, Novell, and other domains.
The knowledge for the various domains can be combined
to address more complex situations.

The multithreaded nature of the inference engine and the
context storage and prioritization mechanisms of the black
board allow progress to be made in troubleshooting one
problem while progress on another problem is impeded. In
addition, the prioritization mechanism allows a new and
more important problem to take precedence over a less im
portant problem. This is important to avoid investigating
small or petty problems while the potential for a disastrous
problem exists.

Finally, forward and backward chaining are strategically
applied to create the observe, hypothesize, and prove behav
iors. Forward chaining rules inform the blackboard that cer
tain information can be used as soon as it becomes avail
able. This sets up the measurements to be made during the
observation stage. When the information becomes available,
the rule decides if a problem might exist. If so, a request to
investigate the problem is created. This request represents
upgrading the state of the problem to the hypothesized level.
The blackboard then attempts to prove or disprove the prob
l em ' s a which genera l ly t r iggers the execu t ion o f a
backward chaining rule. The backward chaining rule will
request additional data, which will generally lead to measure
ment execution and gathering of user input. As a result of
this activity, a response is posted on the blackboard, and the
fault's existence is proved or disproved. This process may
happen for multiple problems during any given session and
various certainties will be associated with each conclusion.
Users can use these certainties and their own intuition to

decide which problem to fix. Fig. 7 summarizes the activities
that occur during this fault finding process.

A Fault Finder Example
The example in this section will show how the Fault Finder's
expert system capability uses the observe, hypothesize, and
prove paradigm to identify and solve a token ring network
problem.

A token ring LAN is configured as a logical ring. It consists
of a set of computing devices, called stations, connected to
the physical wire (see Fig. 8). The logical ring can operate at
either 4 Mbytes/s or 16 Mbytes/s, and a station connected to
the ring must be configured to the correct operating speed.
The stations or spanning devices on the ring are connected
to a multistation access unit (MsAU or MAU). These MAUs
are usually combined in racks in wiring closets. A MAU port
contains a shorted connection (using a relay). When a station
is inserted into the ring the station applies a dc voltage to
the media interface cable (or lobe) that attaches the station
to the MAU. This voltage switches the relay in the MAU and
serially connects the station into the ring without affecting
the normal operation of the ring.

The operation of a token ring network is composed of many
functions. However, for this example only the beaconing
function will be discussed. The beaconing function attempts
to recover the ring from hard errors. Hard errors, such as a
station inserting at the wrong network speed, usually occur

Component

Inference Engine
(Forward-Chaining
Rules)

Blackboard

Instrument
Measurements

Activity

Indicate data that would
ini t iate inferencing when
it becomes available.

Ini t iate measurements
that wi l l p rov ide ind i
cated data.

Gather data and post it on
the blackboard.

Phase

Observe

Inference Engine
(Forward-Chaining
Rules)

Inference Engine
(Forward-Chaining
Rules)

Decide if a fault might
exist based on avai lable
data.

Post requests to prove or
disprove hypothesized
faults.

Hypothesize

Blackboard

Inference Engine
(Backward-Chain ing
Rules)

Measurements

Inference Engine
(Backward-Chain ing
Rules)

Call upon appropriate
modules to prove or dis
prove faults.

Request additional data
to prove or disprove
faults.

Gather data and post it on
the blackboard.

Use avai lable data to
prove or disprove faults
and post conclusions on
the blackboard.

Prove

Fig. fault Rules, activities, and data flows occurring during the fault
finding process.

18 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Token R ing
Ne two rk Se t t o

4 MBy tes / s

shorted receiver wire problem. The rule for broken or
shorted transmit wire is the same except that the word
transmit is used instead of receive.

Node Card Set
t o Wrong Speed

I B M B y t e s s

â€¢ = MAU (Multistation Access Unit) Port

Fig. 8. The token ring layout for the Fault Finder example.

within the station and permanently impair the station's
ability to communicate on the ring.

When a station detects an error on its nearest active path it
sends a beacon frame containing the address of its upstream
neighbor and the type of error encountered. This isolates
the fault domain of the problem. The fault domain consists
of the transmit path of the upstream neighbor station, the
intervening cabling system (cables, MAUs, repeaters), and
the receive path of the station. If the upstream neighbor of
the beaconing station copies eight of these frames it re
moves itself from the ring and performs a self-test. If it
passes the self-test the station will reinsert itself in the ring,
and if it fails, the station will stay off the ring. If the self-test
does not resolve the problem, the beaconing station will
remove itself from the ring and perform a self-test. If it
passes the self-test the station will itself reinsert in the ring,
and if it fails, the station will stay off the ring. If the beacon
ing condition persists even after both stations have removed
and reinserted, the condition is considered a permanent
beaconing condition and will require manual intervention to
resolve.

A station inserting at the wrong network speed is a common
problem when a new workstation is installed on a token ring
LAN. Specifically, a station inserting at the wrong network
speed occurs when the network interface card is not config
ured properly for the network. The following scenario de
scribes how the Fault Finder is able to troubleshoot this
problem.

The scenario begins when a network manager is setting up a
new Novell workstation on a token ring network and while
attempting to attach to the server via the Novell netx com
mand, the following error message is displayed on the
workstation:

"A File Server could not be found."

This message does not necessarily point the network man
ager in the proper direction to solve the problem and may in
fact misdirect the manager.

For this example, three rules and supporting predicates will
be used from the knowledge base. These rules include the
"inserting at the wrong speed" rule given earlier, and one rule
each for broken or shorted transmit or receive wires. The
following code shows a portion of the rule for the broken or

; Broken/Shor ted Rece iver Prob lem
Â¿Problem description
problem!

name! BrokenShor tedRxProb lem)
n lsName! 'BrokerAShor ted Rece iver ')
eventType! #FaultEvent)
f requency! 50)
severity! 50)
de f in i t ion ! The ne twork in te r face card 's rece iver i s bad , the rece iver

minus lead is broken, or the receiver pa i r is shor ted
together. ')

so lu t ion! 'Run a Network Adv isor Lobe tes t on the lobe wi re o f the
speci f ied s tat ion. This determines i f the problem is the
wi re or the s tat ion i tse l f . I f the lobe test passes, rep lace
t he ne two rk i n te r f ace ca rd and re inse r t t he s ta t i on . ')

hypoText ! 'S ta t ion %?%address% may have a b rokenshor ted rece iver . '
concTex t ! 'S ta t i on %?%address% %+%has%%-%does no t have% a

broken receive minus lead or shor ted receive pa i r . ')

 C h a i n i n g R u l e
hypothesize!

name! hBrokenShor tedRx)
cost! 50)
conf idence! 90)
exp lanat ion! ' I f moni tor content ion is not reso lved (t imes out) and

the r ing s ta t ion en ters beacon- t ransmi t mode and t ransmi ts
a beacon MAC f rame, then i t is poss ib le to have a broken
or shorted receive pair . ')

l og icTex t ! 'B rokenShor tedRxProb lem! ?address ?addressNAUN) : -

Â¡Backward Chaining Rule
backward !

name! cBrokenShor tedRx)
cost! 50)
conf idence! 90)
exp lanat ion ! 'The beacon ing s ta t ion w i l l remain in beacon t ransmi t

mode unt i l the s ignal is restored by the removal o f the
s ta t ion w i th the b roken/shor ted rece ive pa i r
th rough the beacon- t ransmi t au to remova l tes t . Th is remova l
i s ver i f ied by runn ing a Sta t ion Adapter Sta tus measurement
to determine i f the r ing s ta t ion wi th the broken/shor ted
rece ive pa i r has actua l ly been removed. ')

l og i cTex t ! 'B rokenShor tedRxProb lem! ?address ?addressNAUN) : -

When the Fault Finder begins executing, the forward chain
ing rules invoke measurements to monitor (observe) the
network. The token ring commentator is an example of a
monitor measurement. The token ring commentator pro
vides a high-level abstraction of significant protocol events.
Significant protocol events are defined as preludes to net
work performance degradation or network failure. The to
ken ring commentator allows the network troubleshooter to
identify network problems without sifting through several
pages of protocol decodes.

October 1H!)2 Hewlett-Packard Journal 19
© Copr. 1949-1998 Hewlett-Packard Co.

The following code shows a portion of the module for
beaconing events, which are reported to the token ring com
mentator when a network card inserts in the network at the
wrong speed.

; Token Ring Network Events

* * * * * * * * * * * * * * * * * * *

event!
n a m e ! b e a c o n M a c F r a m e s M o n i t o r)
n l sName! 'Beacon ')
eventTypel #Protoco lEvent]
f requency! 50)
severity! 50)
de f in i t ion ! 'A Beacon MAC Frame is t ransmi t ted i f a s ta t ion detec ts the

exp i ra t ion o f the c la im token t imer dur ing the moni tor
con ten t ion p rocess . The s ta t ion w i l l b roadcas t a Beacon MAC
f rame iso la t ing the domain to i tse l f and i ts upst ream
neighbor. ')

solut ion! ")
hypoText ! 'Mon i to r fo r Beacon MAC Frames ')
concTex t ! '%+%Sta t i on %%?+%address%%+% t ransmi t t ed a beacon

MAC f rame. %%-%No beacon MAC f rames encoun te red . % ')
parameters !

[useBase l ines #s t r ing /hypothes is " "]
[address #s t r ing #conc lus ion " "]
[add ressNAUN #s t r i ng / conc lus ion " "]

event !
name ! beacon ingMon i to r I
n l sName! 'Beacon ing ')
eventType! #ProtocolEvent)
f requency! 50)
severity! 50)
def in i t ion ! 'The r ing is cons idered beacon ing i f a s ta t ion has t ransmi t ted

8 consecut ive Beacon MAC Frames. ')
solut ion) ")
hypoText ('Moni tor fo r the Ring Beaconing ')
concTex t ! '%+%Sta t ion %%?+%address%%+% is beacon ing s ta t i on

%%?+%addressNAUN%%-%The r i ng i s no t beacon ing%. ')
parameters !

event!
name ! s t ream ingBeaconsMon i to r)
n l sName! 'S t reaming Beacons ')
eventType! #ProtocolEvent)
f requency! 50)
severity! 50)
de f in i t ion ! 'The r ing s ta t ion has been t ransmi t t ing Beacon MAC f rames. ')
so lut ion! ")
hypoTex t ! 'Check fo r the R ing S t reaming Beacons ')
concTex t ! '%+%Sta t i on %%?+%address%%+% is s t reaming beacons a t

s ta t i on %%?+%addressNAUN%%-%The r i ng i s no t s t ream ing
beacons%. ')

parameters !

event!
name ! newAc t i veMon i t o r)
n l sName! 'New Ac t i ve Mon i to r ']
eventType! #ProtocolEvent)
f requency! 50)

severity! 50 I
de f in i t ion ! The new ac t i ve mon i to r ind ica tes the r ing has recovered and

is proceeding wi th normal operat ion. ')
solut ion! ")
hypoText ! 'Check for Ring Recovery ')
concTex t ! '%+%New ac t i ve mon i t o r i s s ta t i on %%?+%address%%-%No

new ac t i ve mon i to r MAC f rames encounte red%. ')
parameters !

The rules are then blocked pending measurement results,
which satisfy the rules' preconditions. Once the results are
received they are posted on the blackboard. A network in
terface card attempting to attach to a token ring network at
the wrong network speed will cause a temporary beaconing
condition on the ring. The token ring commentator measure
ment will identify beaconing on the ring and abstract the
beaconing condition into four different stages. The first
stage, beacon, identifies that beaconing has been initiated
on the ring. The second stage, beaconing, indicates that bea
coning has occurred long enough for the upstream station to
remove and perform a self-test. The third stage, streaming
beacons, indicates that beaconing has occurred long enough
for the beaconing station to remove and perform its own
self-test. The fourth stage, catastrophic, indicates a perma
nent beaconing condition. This particular beaconing condi
tion causes the upstream station and the beaconing station
to remove themselves from the ring.

The token ring commentator measurement observes the
first three stages of beaconing and posts the observations to
the blackboard. The observations are displayed in the Fault
Finder's Observations tile shown in Fig. 2. Following the bea
coning condition, the token ring commentator measurement
also observes that a new active monitor is elected. This ob
servation is used by the Fault Finder to conclude that the
beaconing condition was temporary and that the ring has
recovered. Since the observations posted on the blackboard
satisfy the preconditions specified for the three rules men
tioned earlier (broken/shorted transmit wire, broken/shorted
receive wire, and inserting at wrong network speed), the
problems can be hypothesized.

The problems hypothesized by the Fault Finder are a result
of inferencing through the antecedent part of the rules. The
possible problems are displayed on the Fault Finder's Possible
Faults tile to show the user the current problems the Fault
Finder is investigating (see Fig. 2). This feature is provided
because the Fault Finder may have enough information to
hypothesize a problem, but might not be able to prove that
the problem exists. This may occur because:
The Fault Finder cannot obtain the required information
through measurements
The Fault Finder cannot obtain the required information
from the user
The knowledge base does not have the ability to prove (or
disprove) the problem.

The hypothesized problems are prioritized to allow a more
important problem to take precedence over a less important
problem. Therefore, the Fault Finder will investigate the
excessive ring length problem first because this problem
could potentially effect the entire network while the other
problems are most likely localized to a single user.

20 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The Fault Finder is able to obtain information on its own
about the state of the network to prove (or disprove) hy
pothesized problems. This is performed by the rules' re
questing information (\ia the inference engine) from the
blackboard. The blackboard requests the data from the
appropriate measurement modules and the results of the
measurements are posted on the blackboard to allow the
inference engine to continue and eventually prove (or
disprove) the hypothesized problem.

In this example the hypothesized problems (broken transmit
wire, broken receiver wire, or inserted at the wrong speed)
are proved (or disproved) by determining which device (if
any) was beaconed off the ring as a result of the problem.
This is determined by transmitting a token ring adapter sta
tus MAC frame to the suspected devices. The addressing
information to determine which devices to query is taken
from the observations made during the temporary beacon
ing condition. The rules will execute and configure the
adapter status measurement to obtain the required status
information from the device. The response or lack of a re
sponse from the adapter status measurement will be posted
on the blackboard and used for further inferencing. In this
particular example, neither of the devices was permanently
removed from the token ring network. Therefore, the Fault
Finder will conclude that there was not a broken transmitter
wire or a broken receiver wire, but that a station with the
wrong speed was inserted between the specified upstream
and downstream stations. Notice for this particular problem
the confidence level is indicated as [High] as shown in Fig. 2.

When the Fault Finder discovers a problem on the network,
the user is notified. This notification provides the user with
information about the problem, a definition of the problem,
and the reasoning and required actions to solve the problem.
This information is provided in the Fault Finder's explanation
facility shown in Fig. 4. For a station inserting at the wrong
speed, the required actions tell the user to change the set
ting on the network interface card, and provide an example
of how to perform this task on an IBM Adapter II network
interface card.

This problem (inserting at the wrong network speed) fits
well into the observe, hypothesize, and prove paradigm. The

Fault Finder can observe or passively monitor the network
for significant events to hypothesize possible problems. The
real strength of the Fault Finder, however, is its ability to run
instrument measurements automatically, to obtain status
information from different network devices, and to prove
that a problem exists.

Conclusion
Protocol analyzers provide powerful measurement capabil
ity that allows experienced LAN troubleshooters to solve
many network problems. The Fault Finder provides the next
generation in LAX troubleshooting tools. It automates the
process of troubleshooting, allowing network managers to
focus their efforts on those problems requiring human atten
tion. It incorporates the knowledge of expert troubleshoot
ers into its rule base, allowing network managers to take
advantage of a powerful problem solving instrument. Finally,
the Fault Finder uses the same troubleshooting model as
expert troubleshooters â€” observe, hypothesize, prove.

Acknowledgments
This work has been the result of discussions with many
people. Many thanks to Cliff Frost at the University of
California at Berkeley, Bruce Hitson at Teknekron Info-
switch Corporation, and Randy Strickfaden, Peter Haddad,
Jeff Hintzman, and Simon Lewis at Hewlett-Packard Labora
tories. Many people have contributed to the design and im
plementation of the Fault Finder. Our special thanks to Dave
Fish, Mark Smith, Tom Wisdom, Paul Kingsley, and Bill
Marbaker.

References
1. R.S. Englemore-and T. Morgan, Blackboard Systems, Addison
Wesley Publishing Co., 1988.

2. V. Archi R. Dodhiawala, and L.S. Baum, Blackboard Archi

tectures and Applications, Academic Press, 1989.
3. 1. Bratko, PROLOG: Programming f or Artificial Intelligence,

Second Edition, Addison Wesley Publishing Co., 1991.

Bibliography
1. B.L. Hitson, "Knowledge Based Monitoring and Control of Dis
tributed Systems," Technical Report no. CSL-TR-90414, Stanford
University, 1990.

()< lohcr 1992 Hewlett-Packard Journal 21
© Copr. 1949-1998 Hewlett-Packard Co.

The User Interface for the HP 4980
Network Advisor Protocol Analyzer
A PC-based, object-oriented software architecture forms the underpinning
for the HP 4980 Network Advisor's user interface.

by Thomas A. Doumas

The HP 4980 Network Advisor protocol analyzer's user inter
face provides LAN troubleshooters with a clear, concise, and
consistent presentation of measurement results. The user
interface is built on a graphical, window-based system. The
user interacts with a number of system windows to access
and control the features of the instrument. This interaction
is through pull-down menus, pushbuttons, list boxes, and
dialog boxes associated with specific features. Support for
servicing these user interactions is provided by a layer of
software called the measurement architecture. The measure
ment architecture software and other system software are
collectively called the general-purpose environment. The
general-purpose environment software is written in the
object-oriented Smalltalk language and runs on a PC.

Working in consort with the general-purpose environment is
another environment called the analysis and real-time (ART)
environment, which runs on a RISC-based hardware platform
and provides the services for interfacing to the Network
Advisor's front panel and the network under test. A high-level
view of the general-purpose and ART environments is shown
in Fig. 1. The ART environment is described in detail in the
article on page 29.

The following features are provided through the Network
Advisor user interface:

H a r d w a r e S o f t w a r e

lnte!386SX-Based PC

AMD29000
RISC-Based

Analysis System

IEEE 802.3 â€¢ IEEE 802.5
N o d e N o d e

I n t e r f a c e â € ¢ I n t e r f a c e
C a r d C a r d

User Interface
Window System
Measurement Archi tecture
System Services
Measurement Objects

IEPC

Protocol Modules
Acquis i t ion Modules
Processing Unit

General-
Purpose
Environment

Analysis and
Real-Time
Environment

Fig. 1. A high-level view of the main hardware and software and
components of the Network Advisor. IEPC is the interenvironment
process communication channel.

' Simultaneous execution of measurements. The user can
execute multiple measurements simultaneously. For exam
ple, users can start a traffic generation measurement to
produce a specific network load and simultaneously
monitor the frames with protocol decodes and statistics
measurements.
Graphical display. The Network Advisor user interface is
enhanced by a graphical display. This 16-color, VGA display
system provides a platform for displaying statistical infor
mation with presentation tools such as gauges, graphs, and
bar charts. The network statistics measurement provides the
user with line graphs correlating multiple network parame
ters and gauges that change color to indicate threshold
events.
Consistency across measurements. All Network Advisor
measurements are controlled with a common user interface.
The user executes, configures, pauses, and stops all measure
ments with the same mouse clicks or keystrokes. Each mea
surement has a set of standard menu items for controlling
these common features.
User-definable measurement presentation. The Network
Advisor presents the measurement display by grouping the
measurements into categories and subcategories. The stan
dard set of categories is first indexed by protocol stack and
then by measurement type (e.g., statistics, timing, perfor
mance, etc.). Users can create their own categories and sub-
categories containing their choice of measurements. This
feature allows the Network Advisor measurement selection
window to be customized for specific tasks. Since measure
ments can appear in multiple categories, new categories do
not interfere with existing categories.
Online help system. The Network Advisor software includes
an online help system. The help system provides help on the
use of Network Advisor features and help on specific data-
communications topics such as network protocols.

Measurement Organization
The Network Advisor presents the user with functionality
oriented around the measurements on the network. Some
examples of measurements include individual protocol de
codes, protocol stack decodes, traffic generation, network

* A protocol stack is a group of protocols that work together to provide a service for network
communication, and represents one possible choice of protocols for the seven layers of the
ISO OSI Reference Model. For example, the ARPA stack defines the protocols FTP, SMTP,
and telnet for the application layer, TCP for the transport layer, IP for the network layer, and
various protocols (e.g., IEEE 802.3 and 802.51 for the data link layer, and leaves the other
layers undefined.

22 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

performance summary statistics, automatic node discovery,
and the node generating the most errors.

Traditional protocol analyzers provide access to their func
tionality by grouping features into a small number of prede
fined, fixed functional areas. For example, the HP 4972A LAX
protocol analyzer groups functionality into the broad areas
of decodes and statistics. The statistics functionality group
is composed of a complex menu tree which gives the user
access to features as diverse as network performance statis
tics, connection matrices, and traffic generation. This menu
tree presents the user with a variety of parameterization
menus along the way. For example, the decodes functional
ity group presents the user with parameterization menus for
selecting protocols, protocol layers, and display formats.

The Network Advisor's functionality is accessed through
measurements. Each measurement is self-contained and has
a set of configurable parameters that are specific to that
measurement. All measurements use the same user inter
face style for parameterization. The presentation of the mea
surements is controlled by the categories and subcategories
that act as view filters. If the standard categories are not
intuitive or useful for a particular situation, the user can
create custom categories.

This Network Advisor measurement organization provides
the user with presentation functionality. Users can select the
measurement needed without distractions from unrelated
data. This is an improvement over the collections of func
tionality in fixed pieces and the different user interfaces
provided in traditional protocol analyzers. Fig. 2 depicts this
difference in instrument organization. The upper portion of
the figure depicts the Network Advisor concept and the
lower portion depicts traditional instrument organization.

General-Purpose Environment
The software architecture for the general-purpose environ
ment is shown in Fig. 3.

The main areas in the general-purpose software environment
include:
Applications. These are the modules that provide features
such as protocol decodes and statistics to the user and
handle the displays and input from the user.
Frameworks. These are groups of classes that provide the
foundation on which many of the user interface features are
built.
Measurement Architecture. This is a set of global objects
and classes that control shared resources and provide access
to system functions. Shared resources include the hardware
in the ART environment used to capture and hold data
coming from the network under test.

The software in the general-purpose environment is imple
mented in the object-oriented Smalltalk language (see
"Object-Oriented Design and Smalltalk" on page 24).

User Interface Frameworks
The Network Advisor user interface is built using multiple
layers of frameworks. A framework is a group of classes
that implement commonly used features such as printing,
window system control, and paging and searching through
data. A framework is generally used without modification by
the layer of software above it. In some cases the framework
classes are subclassed for slight behavior modifications.
Classes implemented at higher layers of the system do not
"tunnel" through lower layers to access layers below their
adjacent layer. This rule enhances the maintainability of the
system.

Network Advisor's
Measurement Organizat ion

Measurement Topics

Decodes
Summary Statistics
Timing
Performance Devices
User-Def ined Measurements

Tradi t ional Measurement
Organization

Decode Applicat ion Statist ics Application Canned Tests

Fig. 2. Differences in measure
ment organization between tradi-
tiunal protocol analyzers and the
Network Advisor.

<)(i.ilÂ·iÂ·i- 1992 Hewlett-Packard Journal 23

© Copr. 1949-1998 Hewlett-Packard Co.

Canned Tests: ARP, Ping, Traff ic Generat ion,
Commentators, Active Station List .

S u m m a r y S t a t i s t i c s , N o d e E t h e r n e t , T o k e n R i n g ,
S t a t i s t i c s , D i s c o v e r y . . . T C P , I P , S N A . . .

Canned Test Framework Stat ist ics Framework Decode Framework

M e a s u r e m e n t A r c h i t e c t u r e : S e t u p , S e l e c t , P a r m M a n a g e r , R e s u l t V i e w , N o d e l i s t , M e a s u r e m e n t , M e a s u r e m e n t P r o x y ,
MeasurementDatabase , EventLog . . .

GAFW: ART Interface, Window System, Graphics, Processes, Event Dispatchers, Database, Help System

Smalltalk V/286

DOS Services

Hardware Platform: PC, ART Interface, ART

Fig. 3. The software architecture
for the general-purpose environ
ment. IEPC is the interenviron-
ment process communication
channel.

Generic Application Framework (GAFW). The core system
services of the Network Advisor are provided by a group
of classes called the generic application framework. These
classes implement the windowing system, ART interface,
error handling, and so on.

Specific Application Frameworks. The specific application
frameworks provide a set of classes to implement a class of
measurements that have common features. The decode
framework is a specific application framework upon which
all the protocol decode measurements are built. This frame
work is different from the others because it supports a post
processing mode of operation. In addition, the decode
framework provides a data throttling protocol for run-time
decode displays that are not required to maintain real-time
display of received frames. The statistics framework, which
is another specific application framework, integrates multi
ple statistical measurements into a single composite mea
surement. It provides different ways of showing statistical
data such as generic graphs, gauges, pie charts, and bar
charts. It also provides configuration capability for each
component measurement.

Canned Test Framework. The canned test framework supports
all of the canned tests such as ARP, ping, traffic generation,
protocol commentators, and active station list. This frame
work focuses on programmatic control of the front-end data
transmission interface and real-time display of results.

Measurement Architecture
The measurement architecture is a software platform that
defines and implements a set of standard features and inter
faces to system functions. These standard features and in
terfaces are implemented as global objects and thus are
available to all measurement objects in the Network Advi
sor. Software developers can use the classes of objects in
the measurement architecture as they are, or modify their
behavior with subclassing. The objects in the measurement
architecture provide the classes to create the following user
interface features.

* A protocol in which the decoder sends a message to the ART environment to retrieve the next
eight frames of data.

1 ARP address resolution protocol) is used to find the physical address for a specific IP address
in an ARPA prptocol stack.

Object-Oriented Design and Smalltalk

Object-oriented designs are based on the data that is present in the system. The
object-oriented model defines objects that encapsulate data and provide all de
fined modularized (methods) that act on the data. The entire system is modularized
on the designs, of the data structures. This is in contrast to procedural designs, which
focus on algorithms and features. The main benefit of the object-oriented approach
is that the data provides more stability over time than algorithms because only the
methods in the object can modify data, whereas with procedural designs, data
structure changes and global access to data affect the stability of data.

The major elements of the object-oriented model are: abstraction, encapsulation,
hierarchy, and modularity. Abstraction is defined as the description of a system
that focuses on the details that are significant while hiding the details that are not
significant. Abstraction describes the external behavior of the object or system.
The concept of encapsulation means that the data structures of an object are
accessed only through a publicly defined interface to the object and that the
Implementation details of the object are hidden. This gives the programmer the
freedom to reimplement the object for improving performance or repairing defects
without worrying that some user of the object is dependent on the specific data
structure or the implementation of the methods that operate on the data. The
hierarchy of the object-oriented design is an ordering of the abstractions that define
the system. In Smalltalk, the class hierarchy defines which classes can inherit
functionality. For example, the class Dictionary inherits from the class Collection.
Modularity refers to abstractions grouped into discrete units. The modules should
be loosely coupled so that changes in one module will not require modification in
others.

In Smalltalk, abstractions are defined in classes. A class contains data and methods
that operate on the data. A program is built by creating instances of the classes
and tying the instances together to create the desired solution.

To implement the user interface and the other classes in the general-purpose
environment, we used SmallTalk/V28B from Digitalk Inc., and a development
environment called Envy/Developer from Object Technology International. Envy/
Developer provides a network-based (Novell Netware) team programming environ
ment control, tools for tasks such as source code control, revision control, debugging,
and software production.

Bibliography
1 . T Kraemer, "Product Development Using Object-Oriented Software Technology," Hewlett-
Packard Journal, Vol. 40, no. 4, August 1989. pp 87-100.
2. P. Hewlett-Packard and S. Witten, "Object-Oriented Design in HP IVI," Hewlett-Packard Journal. Vol.
41, no. 5, October 1990, pp. 29-30.

24 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Features Selection. The user interface measurements window-
presents the user with all of the available measurements.

The menu items in the measurements window give the user
the ability to open a measurement to run, to configure a mea
surement, to stop all measurements, and to run multiple mea
surements. In addition to measurement control, the user can
import measurements created on another Network Advisor.

Measurement Configuration. The Network Advisor provides a
set of user-modifiable parameters to control specific features
of a measurement. These parameters can affect the presen
tation of data, and in some cases they can affect data trans
mitted on the network. Users access the configurable param
eters of measurements with the Config menu item, which
appears in each measurements window. The parameters are
available to developers via a programmatic interface.

User-Defined Measurements. The Network Advisor measure
ments can be cloned into new, user-defined measurements.
This feature allows users to configure a measurement for a
specific task and then create a new measurement using the
same configuration.

Display Management. All window objects use the display
manager to display themselves when they are ready. The
display manager keeps track of the location of all windows
and suggests a size and placement for new windows. The
display manager provides a similar function for the icon area.

Measurement Control. All measurements can be started,
stopped, or paused. In addition, all measurements can mod
ify the source of data (e.g., capture buffer or the network
under test).

Intermeasurement Communication. Because the results of one
measurement might be of interest to another measurement,
the measurement architecture defines a standard commu
nication path for intermeasurement communication. The
requesting measurement only needs to register for results
using a programmatic interface to receive the results from
another measurement.

Database. The measurement architecture provides a data
base facility for the Network Advisor. Any measurement or
system function can define and use the database facility. The
node list browser is an example of database use.

Interface to Analysis System. The ART and general-purpose
environments interact through the interemironment process
communication (IEPC) channel. The IEPC channel manages
bidirectional communication between the ART and general-
purpose environments by buffering and dispatching mes
sages in both directions. All commands to the ART environ
ment are Forth strings (see "The Forth Interpreter" below).
The measurement architecture provides a high-level inter
face that allows programmers to build a Forth command
and send it to the ART environment with a single message.
The high-level IEPC interface supports simple commands
(status response only), complex commands (multiple re
sponses), command response timeouts, error handling, and
priority commands. When a command is sent, an object in
the general-purpose environment is dynamically assigned an
IEPC port number. This number identifies the sender of the
command and the receiver of the response. Communication
with global objects is supported with fixed destination
ports.

The Forth Interpreter

In the Network Advisor, the user interface software on the PC communicates with
a Forth The in the analysis and real-time environment on the pod.* The
Forth Commands is used to configure and control the ART environment. Commands
such as start and stop are sent to the ART environment as ASCII Forth strings.
These strings are passed to the Forth interpreter for execution.

Since the ART environment is written in C++ and the Forth interpreter is written in
C, we code. a way to interface the Forth interpreter to the C++ code. We decided
that the best way to do this would be a call to a virtual function. This would allow
objects to inherit Forth interfaces. Since most objects in the system are derived
from was C++ class we defined as the root class, we decided that this was the place
to define the virtual function. We also wanted to modify the Forth source code as
little as possible.

We defined a global function callFoithFuncd that takes two parameters: a pointer
to an written and a pointer to the Forth stack. This function is written in a C++
module and can call the virtual function. It casts the object pointer to a root
pointer and calls the virtual function forthFuncO passing the stack pointer. By
indexing the stack pointer, parameters can be passed between Forth and C++.

By convention the first element of the stack is used as an index to tell forthFuncO
what the to perform. If forthFuncO does not implement the requested func
tion, creates an call forthFuncO in the inherited class. This call chaining creates an
inherited Forth interface.

At system initialization, the ART environment stores a pointer to its global record
in a Forth variable. This global record is an object derived from the root class. The

1 A pod is a and module for the Network Advisor that contains the interface hardware and
the real-time analysis processor system.

forthFuncO for this class implements functions such as instantiating an applica
tion, returning pointers to other objects in the system, and configuring system
parameters. Supplying Forth with this one pointer allows it to make calls and gam
access to the rest of the system.

Development Phase
The Forth interpreter was also used in the development environment. The ART
environment and its applications were developed on workstations. The front-end
code was simulated using a disk file. Frames were read out of the file and passed
to the flow The Forth interpreter was used to control the flow of these
frames to the applications.

The Forth word play took the number on the top of the stack as the number of
frames play. play to applications. The Forth word step was defined to do a 1 play.
This allowed frames to be played into the ART environment to examine the internal
data structures between frames.

The Forth interpreter was also used as a debugging tool in the target environment.
A user interface to the Forth interpreter called Forth Window was created on the
PC. From this window, Forth commands could be sent to the Forth interpreter on
the pod. This allowed us to get and set system variables, dump parts of memory to
the debug port, query memory use, and so on.

Robert L. Vixie
Development Engineer
Colorado Telecommunications Division

The play command tells the ART environment how many frames to process.

Oc-lober 1!)!)2 Hewlett-Packard Journal 25

© Copr. 1949-1998 Hewlett-Packard Co.

Error Handling. The measurement architecture provides a
variety of automatic error handling mechanisms. Errors gen
erated by the ART environment, applications, system func
tions, Smalltalk, and DOS are all handled by these mecha
nisms. In many cases the Network Advisor can recover from
an error and continue executing measurements. In other
cases, the Network Advisor aborts itself and exits to DOS. In
this case, data is saved in an ASCII file on disk so that it can
be examined later to find the defect.

Hardware Configuration. The analysis hardware is controlled
by the analyzer setup interface. The user can modify the
hardware configuration via the setup window. Measurement
objects can access the same parameters through a program
matic interface. The hardware configuration parameters are
categorized into two groups: network interface independent
and network interface dependent. The network interface
independent parameters include capture buffer size, capture
mode (circular or run until full), and capture filters (capture,
exclude, or stop). The network interface dependent parame
ters include configuration commands for the IEEE 802.3
Ethernet network interface card and the IEEE 802.5 network
interface card.

Node Lists. The node list feature allows the user to create
and maintain node lists. The node lists are used by most
measurements in the system to map physical network ad
dresses to mnemonics that are meaningful to the user. The
node list can be created automatically with a measurement
object that monitors the network traffic to discover nodes. A
set of utilities converts node lists from a variety of formats
into Network Advisor format.

Event Log. The event log is a database of significant events
that the Network Advisor has observed. These events are
grouped into the following categories: protocol, threshold,
topology, fault, and instrument.

Native Language Support (NLS). The Network Advisor soft
ware has built-in support for localization. The text displayed
throughout the Network Advisor is provided by NLS dictio
naries. Through the use of NLS dictionaries, the text can be
localized without modification of the code.

PC Configuration. The Network Advisor software provides a
set of configuration functions that are available to the user
via the PC configuration window. These functions allow the
display timeout to be set, measurements to start automati
cally when the analyzer is invoked, and DOS file operations
to be carried out.

Measurement Execution
When the user requests via a menu selection to see certain
measurement data, a number of objects are instantiated to
perform the measurement, store the data, and display the
results. Fig. 4 shows the system before a measurement object
is instantiated and Fig. 5 shows the situation after a measure
ment object is instantiated. Some or all of the following
events take place during measurement execution:

â€¢ To execute a measurement, the user selects the measure
ment in the MeasurementSelectView window and then chooses
the Run menu item from the MeasurementSelectView menu (Â®
in Fig. 5).

M e a s u r e m e n t S e l e c t V i e w

M e a s u r e m e n t S e l e c t M o d e l

A n a l y z e r S e t u p j S S e r v i c e R e q u e s t

M a i n D i s p a t c h e r

Local (Temporary)
Objects

Global Objects

Pointer Linkages

Fig. 4. Initial condition of ob
jects in the system before the
execution of a measurement.

26 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

User Selection

(T)

M e a s u r e m e n t S e l e c t V i e

A n a l y z e r S e t u p j â € ¢ S e r v i c e R e q u e s t

M a i n D i s p a t c h e r

Local (Temporary)
Objects

Global Objects

Pointer Linkages

Possible Linkages

Fig. 5. Linkages and interactions
when a measurement object
(Measurement_Obj_C) is created to
perform the measurement
operations.

â€¢ After Run is selected, a message is sent to the Measurement-
SelectModel indicating which measurement to run (Â© in Fig.
5). The MeasurementSelectModel holds a list of objects that act
as proxies for the actual measurement object. The proxy for
a measurement object holds the name of the class to instan
tiate for the specific measurement. It also holds the name of
a measurement file that contains the data for the measure
ment. The proxy instantiates the appropriate class and then
sends an initialize message to the instance (Â® in Fig. 5).
From here, the measurement object takes over and com
pletes its own initialization. The measurement object reads
its database from disk and creates the MeasurementDataBase
object (Â® in Fig. 5). The MeasurementDataBase holds the
definitions and current values of the user configurable pa
rameters for the measurement. In addition, the Measurement
DataBase contains the specification for the view that the
measurement object is to build for displaying the measure
ment is With this information the ResultView object is
created (Â® in Fig. 5).

â€¢ The to interacts with the MeasurementDataBase to
allow the user to configure the measurement (Â® in Fig. 5).
Examples of configurable parameters include the sample
period for a statistics measurement, timestamp mode for a
decode, or percent utilization from a traffic generation
measurement. The ParmManager object is instantiated
when the user requests the configuration window for the
measurement object.

â€¢ A measurement object might require that the node list be
loaded from the disk-based databases into memory. If this is
the case, then the measurement object sends a message to
the global node list object to accomplish this.

â€¢ The measurement object might also post events to the event
log as part of its startup sequence. An example would be the
time the measurement started.

â€¢ Some measurement objects automatically configure to cer
tain hardware or ART states. For example, the decode mea
surements will start the data capture if the data source indi
cated in AnalyzerSetup is the network under test. If the data

October 1992 Hewlett-Packard Journal 27
© Copr. 1949-1998 Hewlett-Packard Co.

source is the capture buffer, then the decode measurements
will request enough frames to fill the ResultView. The statistics
measurements warn the user if the data source is not the
network under test since statistics only execute in real time.

1 After the measurement object is linked into the system and
fully initialized, it will start executing. To do this, the mea
surement object sends a message to AnalyzerSetup and re
quests that the front-end measurement be started (Â© in Fig.
5). AnalyzerSetup will get a unique handle (identifier) for the
measurement and start the data capture. AnalyzerSetup keeps
track of which measurement objects have requested a start
measurement so that when the measurement objects re
quest a stop, the front end will not be stopped until all mea
surement objects have requested a stop. In this way multi
ple measurements can run and stop independently.
Measurement objects can send messages to the ART envi
ronment using the ServiceRequest object, which provides a
high-level interface for sending Forth messages and receiving
responses from the messages.
When the user chooses to close a measurement, the mea
surement object breaks all of its references to system re
sources. This process includes removal of the ResultView
object window from the window scheduler causing the win
dow to disappear. The Smalltalk memory manager will then
be able to recover the newly available memory.

Process Model
The process model is an important part of the general-
purpose environment because it supports the simultaneous
execution of multiple measurements while still providing a
responsive user interface (see Fig. 6). Smalltalk supports
separate processes with their own stacks of send messages.
Processes all run within the same Smalltalk memory so they
are more like threads than real processes with memory
protection. The process scheduler is not time preemptive
but rather selects a new process to run when an interrupt
occurs or when the currently running process blocks, yields,
or finishes.

The general-purpose environment runs two distinct pro
cesses. One process is the user interface process and the
other is the background process. The user interface process

User Interface Process

To
Application

Background Process

Background
Semaphore

Background
Process
Queue

Fig. 6. Process model and dispatcher.

runs at a higher priority than the background process. The
relative priorities are set this way so that the user interface
can interrupt the background process and provide the user
interface with good responsiveness.

The user interface process processes all keyboard, mouse,
and timer events. It also blocks on a keyboard semaphore
until it is awakened by the keyboard interrupt service routine.

The background process processes events that are gener
ated by the ART system. Examples of background events
are statistics and decode data units, front-end control
information, and analysis control information.

Each process maintains a separate queue and dispatcher for
storing the events generated for that process. This way, a
large queue of background events cannot cause the user
interface events not to be processed. This is the key to user
interface responsiveness.

28 October 1992 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

The Network Advisor Analysis and
Real-Time Environment
The user interface and protocol decode applications of the HP 4980
Network Advisor use the services of a software platform that provides
real-time protocol analysis and an interface to the network under test.

by Sunil Bhat

The analysis and real-time (ART) environment of the HP
4980 Series Network Advisor protocol analyzers is a soft
ware platform that has all the necessary services to support
real-time network protocol analysis applications. To a lesser
extent it also supports postanalysis of captured data. The
ART environment is one of two major environments that
represent the Network Advisor's software architecture. The
other environment is the general-purpose environment.
The general-purpose environment provides support for the
general-purpose programming of the Network Advisor. Spe
cifically, the general-purpose environment is responsible for
the user interface, file management, and all other services
that are essential at the user level. The general-purpose main
tains all persistent information like node lists and setup con
figurations, and treats the ART environment like a device.
Both of these environments are depicted in Fig. 1.

Some aspects of the ART design were leveraged from the
CONE1 (common OSI network environment) architecture,
which provides a network-specific operating system for the
HP OSI Express card and an environment for implementing
OSI protocols. Specifically, the logical buffer services for
encapsulation, segmentation, and reassembly of data were
ported from the CONE implementation.

At the software level, the general-purpose and ART environ
ments communicate with each other by an interenvironment
process communication (IEPC) mechanism. At the hardware
level, the ART environment executes on the AMD29000 RISC-
based processor while the general-purpose environment
executes on the Intel386SX-based processor and they com
municate via a shared memory module. The general-purpose

ART Environment

General -Purpose
Environment

IEPC

Acquisit ion
Unit Interface

(AUI)

lnte!386SX-Based PC

Acquisition
Unit

AM029000
RISC-Based

Unit

Network Under Test

Fig. 1. High-level ART and general-purpose system architect i in â€¢.
IEPC is the interenvironment process communication channel.

environment controls and configures the ART environment
by sending messages via the IEPC mechanism, and the
ART environment transfers the results of its analysis to the
general-purpose environment via the IEPC mechanism.

Typically, any application on the Network Advisor has an
analysis module that operates in the ART environment. This
module does in real time all application-specific analysis
based on relevant data from the network or network counts
maintained by the hardware. There is also a corresponding
module in the general-purpose environment that provides the
user interface for the application. The application-specific
user interface controls and configures its analysis module
by commands sent across the IEPC. It also processes and
displays the results sent by its analysis module to the user in
some suitable format â€” graphical, tabular, or simple text.
The Network Advisor allows multiple applications (also
called measurements) to be active simultaneously. Therefore,
at any given time there can be numerous applications active,
each with its own analysis and user interface modules in the
ART and general-purpose environments communicating
across the IEPC.

The general-purpose and ART environments constitute the
top-level logical entities of the Network Advisor's software
architecture. The implementation of the Network Advisor
software follows this logical design very closely. The IEPC
implementation is split between the general-purpose and the
ART environments. The general-purpose environment is
written primarily in Smalltalk and the ART environment is
almost entirely written in C++.

This article describes the architecture and high-level design
issues of the ART environment. The user interface and more
details about the general-purpose environment are described
in the article on page 22.

ART Subsystems
As shown in Fig. 1, the ART environment consists of two
subsystems: the processing unit and the acquisition unit.
The processing unit contains hardware independent func
tions and the acquisition unit encompasses all hardware-
specific low-level functions. The processing unit is designed
to be hardware independent and can therefore be ported with
relative ease onto other hardware platforms.

The acquisition unit is responsible for interfacing to the net
work under test and all the relevant hardware counters and
timers. While connected to the network, the acquisition unit

October 1992 Hewlett-Packard Journal 29
© Copr. 1949-1998 Hewlett-Packard Co.

captures real-time data and stores it in a buffer called the
capture buffer. It also reports status information and does
all other hardware specific housekeeping.

The processing unit is primarily responsible for real-time
event processing. These events are typically data events
stored in the capture buffer by the acquisition unit. The
events could also be commands sent from the general-
purpose environment or events generated within the pro
cessing unit. The processing unit also supports event post
processing. This allows the user to capture a full buffer of
data that represents an interval of network activity, and then
analyze it in postprocessing mode.

The Acquisition Unit
The data flow of the acquisition unit with respect to the rest
of the system is shown in Fig. 2. The acquisition unit ac
cesses the front-end hardware that interfaces to the network
under test. The front-end hardware transfers MAC-level
frames from the network under test and stores them in the
capture buffer along with a timestamp, length, and status
information for each frame. These timestamps help protocol
analysis modules correlate data with time. In the ART envi
ronment, frames that are stored in the capture buffer typi
cally represent events. The introduction of a frame from the
capture buffer to the processing unit is called a frame arrival

MAC stands for media access control, the lowest level of the protocol stack Thus. MAC
frames media. the frames actually transmitted on the physical network media.

event. Whenever an event is generated, it gets appended to
the event buffer, which presents an event stream to the
processing unit.

The processing unit uses the event data stream, control mes
sages from the general-purpose environment, and timer in
formation to produce two distinct data flows. The first data
flow is the analysis information that is sent from the pro
cessing unit to the general-purpose environment via the
IEPC. This information flow consists of the results from
protocol analysis modules such as protocol decodes and
network statistics executing in the ART environment. The
results are packaged in an application independent form
called analysis items. Analysis items are described in the
article on page 34.

The other data flow results from send requests generated by
the general-purpose environment. This flow, which can be a
single frame or a sequence of frames, provides stimulus to
the network under test. A traffic generator is a prime exam
ple of an application that can request entire sequences of
frames to be transmitted repeatedly to create user-specified
traffic on the network under test.

There is another distinct data path through the acquisition
unit that is made up entirely of frames addressed to the Net
work Advisor. These frames are stored in the node card re
ceive buffer and the acquisition unit reports them to the
processing unit as node card arrival events. This data path,

User Control

General-Purpose Control

Processing Unit

User Information

Operating Region
of Processing Unit

Acquisit ion Unit Interface

Setup and Control

Acquisit ion Unit

H a r d w a r e F i l t e r s , _ _
B o o l e a n s , a n d O t h e r C a p t u r e B u f f e r

Control Registers

General-Purpose Information

Timer
Expirations
and Other

System Events

'Acquisit ion Events

Form Events

Node Card
Receive Buffer

Hardware Counter,
Timers, and Status

Registers

Send Requests

N e t w o r k
Under Test

Ne twork
Under Test

'Acquisit ion Events = Frame Arrival Events, Node Card Events, and Counter Read Events. Fig. 2. Acquisition unit data flow.

30 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

along with the ability to send requests to the network, pro
vides the basic node card functionality that enables the pro
cessing unit to make the N'etwork Ad\isor behave as a valid
node on the network and not just a monitoring environment.
This functionality is essential for supporting remote capabil
ities as well as interactive applications like ping and ARR At
the lowest level the front-end hardware provides the physi
cal interface to the network and is responsible for sending
frames to and receiving frames from the network.

Acquisition Unit Interface
Access to the functionality of the acquisition unit is pro
vided by the acquisition unit interface which marks the
boundary between the processing unit and the acquisition
unit. The interactions across this interface are summarized
in the following sections.

Control and Configuration. The processing unit controls the
acquisition unit. Among other things, it issues start and stop
directives to initiate and terminate capture of data from the
network under test. MAC-level frames are captured from the
network in either continuous or autostop mode. In the con
tinuous mode the capture buffer is viewed as a circular
buffer that wraps around until the processing unit issues a
stop command. In the autostop mode data is captured until
the capture buffer is full, which triggers an automatic stop.
Based on user selection, the processing unit configures the
acquisition unit to operate in one of these modes. Apart
from direct control, the processing unit also configures
acquisition-specific parameters like the size of the capture
buffer.

Most of the protocol information is available within the lead
ing portion of a MAC-level frame, which is made up of proto
col headers for each level of data encapsulation. The acqui
sition unit provides the user, through the acquisition unit
interface, with the ability to specify the number of leading
bytes of a frame that should be stored in the capture buffer.
In such a case, the frame is said to be sliced to a specified
length. This allows the user to store only the relevant portion
of the frame, which effectively increases the capacity of the
capture buffer.

Receive Data. The processing unit receives data events from
the acquisition unit. These events are MAC-level frames from
the capture buffer. For each frame captured by the acquisi
tion unit, an information header is added by the front-end
hardware. This header information includes a timestamp,
the received length of the frame, and other status informa
tion detected by the front-end hardware (e.g., CRC errors).

Event Formation. The acquisition unit is responsible for the
formation and reporting of all events or exceptions to the
processing unit. As the frames get stored in the capture
buffer, the acquisition unit generates frame arrival events to
the processing unit. Similarly, the acquisition unit generates
a node card arrival event for each frame received that is
addressed to the Network Advisor. It also reports the hard
ware counts (counter read event) maintained by the front-
end hardware for statistical applications. Any change in the
run mode of the acquisition unit is reported to the processing
unit as a run-mode change event.

Timestamping. The processing unit environment simulates
time using discrete time information provided by the acqui
sition unit. All received data contains a timestamp. In the
absence of data, periodic clock-tick events are sent to the
processing unit. On the current hardware platform, the pe
riod for this event is 100 milliseconds, which defines the
worst-case resolution of time in the processing unit environ
ment. It should be noted that the hardware timer chips are
initialized to the PC time at bootup. This way all analysis is
correlated with a time base. Also, all analysis items sent to
the general-purpose environment have a timestamp for syn
chronization of the general-purpose and ART environments.

Trapping and Filtering. The processing unit programs the ac
quisition unit trapping and filtering functionality using the
set of filters and Boolean expressions provided by the hard
ware front-end. A filter can be specified to match a range of
values for each of the first 127 bytes in a frame and the
frame status byte in the frame header. A Boolean expression
is the result of any logical combination of filters. A frame
along with its hardware assigned header is stored in the cap
ture buffer only if it satisfies at least one Boolean expres
sion. The header provides a status field that reflects the re
sults of the Boolean expressions matched by the frame. For
example, if we wanted to capture all frames sourced by
node A and destined for node B as well as all broadcast traf
fic on the network, we would set two filters. We would spec
ify the source and destination address bytes in the first filter
to match A and B respectively, and set all remaining bytes to
match any value (i.e., don't care setting). The second filter
would have the destination address bytes set to all ones (for
Ethernet) while the rest are don't cares. Finally, we would
set a Boolean expression to be the logical OR of the result of
the above specified filters. The Network Advisor also has
the capability to generate traps from software-matched
Boolean expressions or external signals. Currently only soft
ware traps are implemented. The acquisition unit provides
an indication to the processing unit when a trap condition
has occurred.

Status. The acquisition unit provides status information to
the processing unit about items such as the size of the un
processed capture buffer and the length of the send queue.
This status information is used by the processing unit for its
internal activities such as flow control.

Send Data. The acquisition unit provides services for the pro
cessing unit to send data frames to the network under test.
Each frame destined for the network is defined by the pro
cessing unit as an object called a send object. Entire traffic
scenarios can be described as a list of send objects. This
enables the acquisition unit to support traffic generator
applications.

The Processing Unit
Exception services constitute the core of the processing
unit, which is an event-driven system. The basic control
structure of the processing unit is shown in Fig. 3. The vari
ous entities in the processing unit communicate with each
other by means of exceptions. In the context of the process
ing unit, exceptions are events. Some exception types in the

October 1992 Hewlett-Packard Journal 31

© Copr. 1949-1998 Hewlett-Packard Co.

Exception Handler
Table

Exception
Dispatcher

Exception
Dependent

Data
Analysis Data

Flow to General-
Purpose

Environment

Exception Handler A

Exception Handler B

Exception Handler Z

Send Requests
to Acquisition

Unit

T i m e r G e n e r a l - P u r p o s e A c q u i s i t i o n
E x p i r a t i o n s I n t e r f a c e E v e n t s
a n d O t h e r E x c e p t i o n s

System Events

Fig. 3. Processing unit data flow.

system, like the arrival of a frame or the expiration of a sec
ond, are well-known. Applications can also dynamically allo
cate new exception types and generate them for their own
use. Because of the event-driven nature of the processing
unit, actions are triggered on the arrival of exceptions.

Protocol analysis applications executing in the processing
unit environment are essentially actions that exist without
any control of their own. These applications are called the
exception handlers. Control passes to a particular exception
handler when an exception occurs that it has shown interest
in. This model is similar to environments that handle window
ing applications. It is very effective in handling situations in
which there are typically a number of events from different
sources occurring asynchronously.

Exception Dispatching. The central entities in the processing
unit are the exception dispatcher and an exception queue,
which stores events arriving from different sources. The
dispatcher dequeues exceptions from the queue and invokes
all interested handlers that have previously registered for
the exception. The dispatcher, the exception queue, and all
other associated data structures constitute an operating
region in the processing unit because together these items
can be viewed as a process. The processing unit was de
signed to support multiple regions with different priorities.
However, for simplicity the current implementation has a
single region. Therefore, there is a single dispatcher that
services all exceptions received at the processing unit's
periphery. The decision to implement a single region in the
processing unit greatly simplified its implementation, and
also improved its response time.

To dispatch events to the appropriate handlers, the dispatch
er uses a table that has an entry for each type of exception.
Each entry in this table contains a linked list of zero or more
exception handler tokens. A handler token is basically a
pointer to an exception handler function or routine. Any
application in the processing unit registers for specific ex
ception types by enabling a handler token. This has the effect

of adding the handler token to the handler lists for those
exceptions the application is interested in. The handlers for
a given exception are simply determined by indexing into
the exception handler table using the exception token.

Each exception in the exception queue has a parameter token
associated with it that contains all exception-specific data
that needs to be passed to the handlers when the exception
is serviced.

Event Synchronization. The dispatcher operates in a synchro
nous fashion in that only one exception is processed to
completion before the next one is picked from the exception
queue. The processing unit model is a cooperative nonblock-
ing model. This means that a handler cannot be preempted
before it completes processing. Therefore, the burden is on
all applications in the processing unit to finish processing in
a reasonable time.

The synchronous nature of the processing unit has a number
of advantages for protocol analysis applications, which
include:

1 In a synchronous system there are no race conditions
between various modules.

1 Since each event introduced into the system is processed
completely, there is no need to reorder events based on
timestamp information.

1 The correlation of analysis from different modules with
respect to events and time is greatly simplified.

Timer Services. One of the central concepts with regard to
correlation of analysis from different modules, based on
events, is the notion of time. The processing unit maintains
two time sources. One is called real time, which is driven by
the periodic clock ticks from the hardware. On the current
hardware platform these time ticks are 100 milliseconds
apart. This defines the resolution of the real-time source.
The other time source is line time. This is time simulated by
the processing unit using the timestamps of the data frames
received in the capture buffer. The line time is advanced
each time one of the frames is introduced to the processing
unit as a frame arrival exception. In the absence of frames,
real time is used to update line time.

Using these two sources of time, the processing unit supports
timers and the associated notion of timeout. Timers are rep
resented by the data structure called timer token. Each
timer token has its timeout value and a handler token for its
handler function. The processing unit dispatches the timer
token to its handler function when a timeout occurs. Any
application module in the processing unit can create and use
timer tokens. Standard timer functions like restarting, both
in an absolute and a relative sense, and canceling a timer are
all supported by the timer services of the processing unit.

For both real-time and line-time sources, all timer token
expirations will occur chronologically. The processing unit
guarantees that a timer token with a timeout of N seconds
will not expire before current time plus N seconds, and no
later than an event with a timestamp greater than current
time plus N seconds. During run time, line time will track real
time. In the case of postprocessing, line time is simulated
using data frame timestamps alone.

32 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Conclusion
The ART environment was designed to be an optimized envi-
ronment for supporting real-time protocol analyzer applica
tions. In addition to the basic ART environment, an extensive
debugging and simulation environment was designed to sup
port the development and preliminary testing of the process
ing unit on the HP-UX operating system before integrating
it with the acquisition unit running on the AMD29000 pro
cessor. This strategy allowed us to develop code in parallel
with the development of the target hardware. It also reduced
the integration effort required once the target hardware was
available.

The success of the ART environment design is reflected in
the relative ease with which applications can be written
using ART environment services. In fact, different applica
tions require different services, and as a result, the ART
environment has been extended to provide frameworks for
similar types of applications. The decode framework, which
supports all protocol decodes and the canned test frame
work, which supports customized measurements for specific
protocol analysis, are good examples of ART extensions. It
should be noted that these frameworks in the ART environ
ment have corresponding frameworks in-the general-purpose
environment.

The processing unit was designed to be hardware indepen
dent. This decision enabled us to provide the Network Advi
sor with functionality for Ethernet, token ring, and FDDI
media. Since the acquisition unit interface is an application
program interface to the hardware-specific software, we
need only provide an acquisition unit for the hardware we

are interested in. The rest of the basic ART environment and
its extensions remain the same.

Acknowledgments
The design, implementation and testing of the ART environ
ment and its supporting, debug, and simulation environments
have been a team effort from start to finish. Numerous
people were directly involved in this effort and many more
provided inputs during development, and so it is hard to
mention them all. I would, however, like to thank Bob Pinna
and Bob Vixie who were major contributors to the design
and implementation of the processing unit and the basic
decode framework that supports decode applications in the
ART environment. Thanks also to Jim Quan for providing
the acquisition unit functionality for Ethernet/802.3 and token
ring media. Many thanks to Jerry Morris for providing the
basic operating system functionality for the AMD29000 and
leading the integration effort and the port to the target hard
ware. Thanks to Rohit Mital for porting the logical buffer
services from CONE. Finally, thanks to Betsy Perkins and
Ed Moore for successfully managing this endeavor through
some rough and uncertain times.

References
1. S. Dean, D. Kumpf, and M. Wenzel, "CONE: A Software Environ
ment 41, Network Protocols," Hewlett-Packard Journal, Vol. 41,
no. 1, February 1990, pp. 18-28.

HP-UX is based on and is compatible with UNIX System Laboratories' UNIX* operating system.
It also specifications. with X/Open's XPG3, POSIX 1003.1 and SVID2 interface specifications.
UNIX in other registered trademark of UNIX System Laboratories Inc. in the U.S.A. and other
countries.

X/Open is a trademark of X/Open Company Limited in the UK and other countries.

October 1992 Hewlett-Packard Journal 33

© Copr. 1949-1998 Hewlett-Packard Co.

Network Advisor Protocol Analysis:
Decodes
The decodes feature of the Network Advisor allows users to traverse from
a high-level summary of protocol information to a bit-level interpretation
of the protocol data.

by RoÃ±a J. Prufer

The decode portion of protocol analysis involves the recog
nition and interpretation of the syntax and semantics of the
different types of network protocols. The HP 4980 Network
Advisor is different from traditional protocol analyzers in
that it attempts to interpret data from the network under
test and provide answers to protocol problems, not just
reams of data. Two of the Network Advisor's key features
are a flexible user interface and the number of decodes it
can handle.

Design and Development Considerations
The considerations associated with designing the decode
platform involved deciding how to:
Present information to the user
Divide protocol knowledge between the analysis and user
interface environments
Make a contribution to industry-standard decode practice
Provide a productive environment for decode developers.

Experience from previous products and user feedback an
swered many of the user presentation issues. The solution

to dividing protocol knowledge between environments came
from a definition of the division of responsibilities between
the protocol analysis environment and the user interface
environment. A contribution to decode practice was made by
including knowledge of the network protocols and determin
ing and providing information to the user about a network's
health. Finally, a productive environment was provided in
which developers needed minimal system knowledge, allow
ing them to focus on protocol-specific issues.

Presenting Information
Presenting information to the user involved understanding
the expertise of our potential customers. Experienced net
work managers know the protocols and most of the signifi
cant fields contained in the protocol fields. These users need
to see a high-level view of the data and have the ability to
focus on the specific problem when they determine that
there is a problem. At the other end of the spectrum are nov
ice users who know little about protocol fields but need to
have enough information to ensure that the network is

15:11 06/18/92
îr~

Â© 1991 Hewlett-Packard. U 1.0

Fig. 1. Summary view of an in
ternet protocol (IP) in the
DARPA protocol stack.

34 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

working. For these two very diverse users we found that
there were three \iews of the protocol decode that would
satisfy most requirements: summary view, detail view, and
data \iew.

Summary View. The summary view has several uses of the
same format. The summary decode screen has one line per
frame showing frame number, time, and three to four other
significant fields (depending on the field sizes). This view
can be used on an individual protocol or on a protocol stack.
For example. Fig. 1 shows the summary decode for the in
ternet protocol (IP) in the DARPA protocol stack. This
summary shows the source and destination addresses in a
dot-decimal format, the name of the next protocol layer, and
the size of the data being passed to the next protocol layer.
The summary view is also useful for seeing traffic on the
network. By changing the format slightly, the user can see a
network summary that shows the MAC source and des
tination addresses along with a top-down list of the proto
cols contained in that frame (Fig. 2). Another common use
of a summary display is to show a stack-specific overview.
For instance, the summary for the AppleTalk stack shows
the source and destination MAC addresses and the Apple-
Talk protocols contained in that frame (Fig. 3).

Detail View. The detail view is a full-sized window that
shows one packet or protocol per display. The detail-view
format has three columns. The first column lists the names
of the fields in a packet, the second column contains the
current value in the field, and the third column describes the
meaning of the field or the value in column two. In Fig. 4,
which shows a detail view of an IP packet, the first column
shows an ordered list of the fields that are in the packet. The
first item on the list shows the version of the IP packet,

' Department of Defense Advanced Research Projects Agency.

1 MAC protocol for media access control, the lowest level of the protocol stack. Thus MAC
frames media. the frames actually transmitted on the physical network media.

which according to the second column is 4. The second item
shows that the internet header length field of the IP packet
has the value 5, which indicates 32-bit words (column
three). The precedence field has the value 000... which cor
responds to routine precedence (as opposed to an urgent
precedence). Following the ordered fields in the protocol is
the derived information about the packet. For instance,
there may be an indication about how much data a packet is
passing up to the next layer, or information about the reas
sembly process or protocol-following process.*** The detail
display can also be used to show the fields of an entire pro
tocol stack. For instance, it can show the Ethernet fields,
the IP fields, and the TCP fields together in one display.

Data View. The third view is of the data contained in a packet.
Again, the flexibility exists to show all the bytes of the packet
or just the bytes associated with a single layer. This display
format lets the user see data in a format that may have more
meaning. For instance, there may be users who want to see
data in EBCDIC or hexadecimal formats (Fig. 5). Another
variation shows the entire packet of data with protocol
headers separating the different protocol layers.

Different Environments
The decode design is split between the two major functions
of the instrument. Displaying strings and values and format
ting are handled by the general-purpose environment, and
protocol meaning is determined by a module in the analysis
and real-time (ART) environment. The general-purpose envi
ronment provides mechanisms for handling the Network
Advisor's user interface and the ART environment provides
services for interfacing to the network and transporting data
to and from the general-purpose environment. For greater

'* Protocol following is tracing the different states a connection goes through to transfer
information

12̂ 31 06/18/92 fe 1991 Hewlett-Packard. U 1.0

Fig. 2. Summary view showing
IKKK.snii:! Hi liiÂ·iÃ¯iet decode.

October 1992 Hewlett I ';irkard Journal 35

© Copr. 1949-1998 Hewlett-Packard Co.

06/18/92 Â©1991 Hewlett-Packard. U 1.0

flexibility all the incoming network data, after being inter
preted and put in a special data structure, is sent from the
ART environment to the general-purpose environment. This
allows the user to select which format is more useful and
not have to wait for information to be processed again in the
ART environment. The services provided in the ART envi
ronment and the relationship between the ART and general-
purpose environments are described in the article on page
29. The user interface is described in the article on page 22.

Fig. 3. Summary view for an
AppleTalk stack.

The data structure that is passed between these two envi
ronments is called an analysis item. This structure was
chosen because it allows many different protocols to be
described in one format. An analysis item contains two or
more analysis data units (ADUs) as shown in Fig. 6. There
is a one-to-one correspondence between an ADU and a
protocol decode.

15: H 06/18/92 Â© 1991 Hewlett-Packard, u 1.0
I P D e t a i l e < Ã ¯ D e c o d e

36 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

15:27 06/18/92 11991 Hewlett -Packard, u o

Fig. 5. Data view in hexadecimal
format.

Each ADU contains three sections. The first section is data
for the associated protocol layer; it is referred to as the hex.
The second section is the syntax for the fields in the proto
col. For instance, each field in the protocol has a unique
syntax record associated with it. The last section is a seman
tics section, which contains additional information derived
from analysis of the protocol.

The syntax section is further divided into a series of records.
These records are patterned after the ASN. 1 encoding of a
tag, a length, and a value field.1'2 Each field in the protocol
is assigned a unique number (the tag). In cases where several
protocols share the same field, such as a destination address,

Analysis Item

ADU: Top (of
Protocol Stack)

(User Data)
Analysis Data Unit

ADU: Bottom
(of Protocol

Stack)

(Media Data)

ADU = Analysis Data Unit

Fig. 6. AJÃ analysis ilcni dala structure.

this tag is shared so that it is always called Destination Address
in the display of that field. The second field in the ADU is an
offset field. It indicates where the bytes or bits exist in the
hexadecimal field of the protocol. If the most-significant bit
is 1 then the field is interpreted to be the number of bits, and
if the first bit is a 0, it is the offset in bytes. The third field is
the length of the protocol field. Again, the most-significant
bit indicates a bit or byte length. The last field is called the
status/error/warning field. It is one of the two major con
tributions of the decodes to the Network Advisor. It tells the
user more information about a specific field.

The semantics section of the ADU has a more free-form for
mat. It has a unique tag that describes the information and
the length of that information. Like all information passed
between the two environments, the data in the semantic
section must adhere to the long word boundary rules. Ex
amples of the information passed in the semantics section
include reassembly information, resequencing information,
and protocol-following information.

Decode Development in the ART Environment
The object-oriented C++ design of the ART environment
gives a decode designer four classes to work with. These
include the data analysis class, the module record registra
tion class, the path entry class, and the path SAP entry
class. A GNU-EMACS editor function fills in the class names
and formats a module for simple default class protocol
when a protocol module is first checked out for design. This
provides the decode designer with a foundation on which to
add the features of a specific protocol.

Data Analysis Class. The data analysis class contains a func
tion called makeAdu that allocates and formats the ADU for a

A long word is a four-byte word

A SAP protocol access point) is an addressable point at which protocol services are provided
for the next-higher protocol layer

(hÃ¯ober l'KIÃœ Hewlett-Packard Journal 37
© Copr. 1949-1998 Hewlett-Packard Co.

particular protocol. It allocates memory space for the hex,
syntax, and semantic sections of the ADU. In most proto
cols, the fields are known and do not change. Only in the
case of options or dependent fields are there extra fields
that need to be considered. Because of the large set of
known fields, space can be allocated and field values (tag,
offset length, and status/error/warning) can be defaulted.
When the makeAdu routine is executing, it moves through
each field in the frame data and analyzes it for significant
facts. For instance, in the IP protocol, the version number is
checked. If the version is not 4, the status/error/warning
field of the version syntax record shows a number signifying
a bad version. Another example is the IP internet header
length. If this value is longer than the bytes available, an
error is signaled in the status/error/warning field of the
internet header length syntax record.

The status/error/warning check can be as elaborate as the
designer wants to make it. In some protocols the difference
between a good value and an unacceptable value is not
straightforward. In other protocols there are no fields that
are open to interpretation. For instance, in Novell's NetWare
Core Protocol (NCP) the completion code values are listed
as having five valid values. An update to this specification
for future releases of NCP may add more values, so our de
code for definitively call invalid any other value used for
a completion code.

By using object inheritance, different features can be added
to a decode in the semantic section of the ADU. The devel
oper can inherit several functions into the data analysis
class for conveying additional protocol information to the
user. An example is the dataSize record. This record indicates
how much information is being passed up to the next layer
in a protocol stack from the current layer. Another example
is the calculation of a correct checksum. If the protocol has
a bad checksum, it needs to be displayed along with the cor
rect value. This information can also be sent in a semantic
record.

Module Record Registration Class. The module record regis
tration class allows the decode to be called from almost any
place in the decode process, allowing a protocol to be en
capsulated. This situation is common in the case of the
DARPA internet protocol. This IP can be called directly over
Ethernet by putting the type field value of 0x0800 in the thir
teenth and fourteenth bytes of the Ethernet header. It can
also be called from the SNAP protocol which is above the
IEEE 802.3 and 802.2 protocols. The SNAP protocol maps
the field value 0x0800 to IP just as the type field of Ethernet
does. Both of these protocol combinations call the same IP
decode module.

The module record registration class allows the decode
writer to specify the decode modules called from a particu
lar protocol. For example, in the IP module record registra
tion class, a value of 5 in the next protocol field maps to the
system calling the transport control protocol. Another exam
ple is 17, mapping to the user datagram protocol from the IP
module record registration class.

Path Entry Class. The path entry class joins the ADU items
together to form a chain of ADUs collected into one analysis
item. The data passed in the analysis item might contain an

Ethernet ADU, an IP ADU, a transport layer ADU, and per
haps a file transfer protocol ADU. In addition, standard top
and bottom ADUs are added to the package to take care of
user data such as a file transfer (the top ADU) and media
information (the bottom ADU).

In addition to formatting the information sent to the general-
purpose environment and eventually the display, the path
entry class also takes care of forming the paths in the ART
environment. These paths uniquely define address-specific
mappings. For example, consider a protocol stack in which
MAC address A is talking to MAC address B and the IP ad
dress for A is C and the IP address for B is D (see Fig. 7). In
this stack C will be above A and D above B. The path entry
class will tie A to B, A to C, B to D, and C to D so that one
side of a protocol conversation can always see the state of
the other side.

Path SAP Entry Class. The path SAP entry class allows
connection-oriented protocols to keep track of the two
sides of a transaction and to store additional information
in a common area. A scratch space can be allocated to keep
track of the state of the connections, the sequence numbers,
and any other information that would help follow a connec
tion and share information between the two sides of the
conversation.

A strict layered approach to protocol analysis was chosen
for the decode development model because it allows dynamic
allocation of protocol analysis decodes and frees the devel
oper from the need to depend on knowledge about any other
protocol above or below a protocol module. For instance,
the IP module knows that several different protocols can be
sent information via the next protocol field. However, be
cause of the layered approach in the ART environment, the
IP module does not have to know that any of these protocol
decodes actually exists. The module will send the data to
the next layer, and if there is no decode for the data, the
data automatically gets put into the top protocol module's
hex field in the ADU. This indicates that there are no more
consumers for the data and signals the ART environment
that an analysis item is complete and can be sent to the
general-purpose environment for display. The IP module is
then ready to process the next frame.

Fig. 7. Connections formed between ADUs by the path entry class
to show connections within and between nodes.

38 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Genera l -Pu rpose Env i ronmen t

F r o m A R T E n v i r o n m e n t

Fig. 8. Components and data flows involved in decoding and
displaying data in the general-purpose environment.

Using a prototype template for these four classes and two
very diverse protocols as the first ones to be developed in
this environment, we were able to test some of the decodes.
As more and more decodes were developed, improvements
to the templates were made. For instance, a function call was
added to set a bit indicating to the general-purpose environ
ment that a frame contains an error. Also, subclasses were
developed that are useful to different protocol stacks. An
example of this is a class for handling reassembly. This class
is used in IP and the ISO network layer decode.

To test decodes in the ART environment, the input to a
decode was simulated using tools that take an input file de
scribing the scenario to be tested and provide a stream input
to test the ART code on an HP-UX operating system. This
means that all the test cases a protocol can expect to see
can be put into a file and tested as the code is developed.

The ART environment is designed so that all protocol analy
sis can be done once in one place. This design allows the
display modules to be concerned only with the presentation
of data and not with any protocol-specific knowledge.

Decodes in the General-Purpose Environment
The decode modules in the general-purpose environment
were designed around the three main methods of displaying
information described earlier. These three displays allow the
user to traverse from a high-level summary of information to
the lowest bit-level interpretation. Since they are relieved of
any protocol analysis duties, the general-purpose decode
modules concentrate on taking information from the analy
sis items from the ART environment and the format infor
mation from a database to provide the optimal display of
information to the user (see Fig. 8).

Like the ART environment, the general-purpose environment
was designed using an object-oriented approach. Because
the ADUs consist of the same three sections, there is generic
code in the general-purpose environment that parses each of
the three sections. These parsing modules are optimized
depending on the what the user is viewing. For instance, if
the user is looking at a summary view with only one stack
open, the parser can traverse the analysis item pulling from
each ADU only the information needed for a summary
view. This optimization leads to a significant increase in
the performance of the display system.

For the decode developer, display format information is in
put via a database file written in DBF (database format).
This ASCII file, which is usually written near the end of the

decode development cycle, contains information about map
ping numbers contained in the ADU to strings displayed in
the decode windows. This file is parsed into Smalltalk
Collection and Dictionary classes, which are used at run time in
the general-purpose environment. This implementation has
two ven," important advantages to the decode developer.
First, no knowledge of Smalltalk is required to develop the
decode modules. One less environment to learn helps to
reduce the nonprotocol development time and fully uses the
protocol analysis skills of the protocol expert. The second
advantage is that the decode developers are not required to
do run-time debugging of the decode modules. This drasti
cally reduces the variety of bugs that occupy the protocol
expert's time.

The DBF file format has several sections. The first section is
setup information. This includes the name of the decode
(e.g., IP), the network media (e.g., IEEE 802.3), and the
names of the online help files that can be referenced.

The second section in the DBF file contains data for map
ping the constants sent in the ADUs to the strings that ap
pear in the different protocol views. This mapping informa
tion is split into four sections: mnemonics, errors, warnings,
and status messages. There are some strings common to all
these sections. For instance, if there is a checksum error,
one common string to indicate this condition is included in
the system errors file. In addition to mapping strings, the
mnemonics section also has a provision for declaring the
format in which to display the value. Some common display
formats are convertToDecimal, convertToBinary, convertToDotDecimal,
convertToHex, and convertToAddress. With the convertToAddress
format, user names are mapped to addresses and put into
the database in place of network addresses.

A significant contribution is the ability to display the proto
col fields in a manner that makes sense for each field. For
instance, in the IP protocol the first field is the version num
ber. It is four bits long, and instead of showing the user the
four bits, it is displayed in decimal as the specification is
written (a 4 is easier to read than 0100). Another example of
this is also in the IP protocol. The precedence field is in I he
second byte of the protocol and is three bits long. To a user
who is not familiar with this field, the values mean very
little. However, to a Network Advisor user, the value column
shows that the field is three bits long and specifies the three
bits. In addition to this, the third column gives a high-level
interpretation of these bits (Routine precedence in Fig. 4).

The next section in the DBF file contains the strings for
column headers for the summary, detail, and data view
windows.

When the fields in the DBF have been filled in, the DBF file
is then put through a parse routine. This compilation is quite
robust in terms of catching syntax errors and typing mistakes.
The result is a file of type xxx.msr, which is a measurement
file used at run time by the decode modules in the general-
purpose environment to display the decode information.

The first pass through the development of the decodes in the
general-purpose environment revealed many areas for opti
mization. Because the input to the decode modules is an
ASCII file and the modules are developed with an object-
oriented language, a second pass through the system was

October 1992 I lowlett-Packard Journal 39
© Copr. 1949-1998 Hewlett-Packard Co.

done late in the development cycle to find the common ele
ments among the protocols. For example, a number is now
used to represent common field names, errors, and warn
ings. Also, the detail display uses every syntax record so
there is no need to specify its format in the ASCII file, and
many of the same semantic records are used by protocols so
a standard display method was developed for these records.

The same testing approach used in the ART environment
was used in the general-purpose environment. Files of ADUs
(or analysis items) were generated in the ART environment
and transferred to a PC running the general-purpose envi
ronment. These files were then fed to the decode window as
if it were running from data stored in the capture buffer in
the ART environment. All of the test cases used to test the
ART code were used to test the general-purpose portion of
the product. In addition to testing in separate environments,
test files were sent to an HP 4972A protocol analyzer and put
onto the IEEE 802.3 media for live capture by the hardware.
The results from testing with the HP 4972A were compared
with results from previous tests to verify consistency of
results and regression testing.

The Results
The general-purpose development effort for decodes was
reduced to less than 20% of the total decode development
tune because we used protocol templates, eliminated the
need for our protocol expert to develop in Smalltalk, and
used a robust parser that caught many of the syntax errors
in the DBF file. Debugging time was also reduced because
the general-purpose decode files are one step removed from
the real-time processes.

By dividing the decode implementation into two environ
ments and identifying conventions between common proto
col decode tasks, the development time for new protocol

decodes was significantly reduced. All major protocol stacks
have been decoded and the embedded protocols have been
accounted for automatically. There is a great deal of code
reuse between different protocol stacks because of the
inherited functionality provided by using object-oriented
environments.

There are a few exceptions in which the strict vertical com
munication between protocols had to be subverted. For
instance, in the SNAP decode, if the next protocol field indi
cates AppleTalk protocols, the lowest layer is examined to
see if it is a token ring network or Ethernet. A modification
is then made in the ADU to send this to either a TokenTalk
or an EtherTalk decode based on the lowest layer. Another
example is in the Novell protocol stack in which a reply
frame contains a frame number and a packet type for the
corresponding request frame.

Acknowledgments
The author would like to specifically thank Jim Hammond
for his unending customer support and Bob Vixie for his
help with getting the ART environment working. Special
thanks also go to Gary Roberson and Bob McCabe for their
review of this article.

References
1. Information Processing Systems - Open Systems Interconnec

tion - Specification of Abstract Syntax Notation One (ASN.l), ISO
8824: 1987(E).
2. K. Kimball and M. Ellis, "The Upper Layers of the HP OSI Express
Card Stack," Hewlett-Packard Journal, Vol. 41, no. 1, February 1990,
pp. 28-36.

HP-UX is based on and is compatible with UNIX System Laboratories' UNIX* operating system.
It also specifications. with X/Open's XPG3, POSIX 1003.1 and SVID2 interface specifications.
UNIX in other registered trademark of UNIX System Laboratories Inc. in the U.S.A. and other countries.
X/Open countries. a trademark of X/Open Company Limited in the UK and other countries.

40 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Mechanical Design of the HP 4980
Network Advisor
The package design for the Network Advisor was guided by the electrical,
mechanical, and ergonomic requirements of a PC-based protocol analyzer.

by Kenneth R. Krebs

The HP 4980 Network Advisor package consists of 31
injection-molded parts, 15 sheet-metal parts, 19 cables,
nine printed circuit boards, two custom-machined parts, a
custom power supply, flexible and hard disk drives, a color
or monochrome LCD (liquid-crystal display), and numerous
other custom and standard parts. Its hinged, fold-up, flat-
panel display and fold-down keyboard are designed to make
it easy to use the Network Advisor either on a desktop (see
Fig. 1 on page 6) or in a floor-standing position (see Fig. 1),
while providing maximum portability when closed. It has
interchangeable network interface modules that mount to
the underside of the instrument. The overall package mea
sures 5.9 inches high by 14.3 inches wide by 16.8 inches
deep and weighs 25 pounds fully loaded.

Fig. 1. The Network Advisor in a floor-standing position.

Design Decisions
Mechanical design for the Network Advisor was driven by
several major decisions made very early in the product defi
nition phase of the project. The first of these was to make
the instrument DOS-compatible and, therefore, PC-based.
Because of the dominance of the DOS operating system in
the LAN testing market, our customers demanded DOS
compatibility in our products.

While we did not intend to market the Network Advisor as a
PC that does protocol analysis, but rather as a protocol ana
lyzer with an embedded PC, we did feel that the ability to
run standard PC applications (e.g., word processors and
spreadsheets) would be a marketing benefit. Therefore, we
needed a full-screen, 80-column display. Since the VGA stan
dard was emerging as the choice of the future, we chose it
for our instrument. A second result of the DOS decision was
the requirement for a full-function, full-size PC keyboard
and internal flexible and hard disk drives.

A second decision (a result of the first design decision)
was the need to be able to install at least one and prefer
ably two standard, off-the-shelf, full-length, low-profile
PC cards.

The third major decision was the choice of a flat-panel
technology over a CRT. The VGA decision dictated a CRT
too bulky and heavy to meet our portability requirements.
Also, CRTs have some manufacturing disadvantages we
wished to avoid (e.g., pincushioning, alignment, high voltages,
and shielding). We also felt that the market perception of
flat panels as a leading-edge technology would be beneficial.

We investigated several flat-panel technologies including
electroluminescent, gas plasma, and liquid-crystal. Electro
luminescent and plasma displays were costly, had high power
dissipation and lacked sufficient grayscale shades. After
investigating several types of LCD, we chose a cold-cathode,
backlighted, film-compensated LCD as having the best com
bination of brightness, contrast ratio, cost, and weight. Just
before our tooling release, Sharp Inc. introduced a 10.4-inch-
diagonal, TFT (thin-film transistor) active matrix, color LCD,
which is larger and thicker than the monochrome LCD we
had chosen. After a redesign effort to accommodate the
larger display, the display housing injection mold was de
signed with inserts to allow for both color and monochrome
versions.

October 1992 Hewlett-Packard Journal 41

© Copr. 1949-1998 Hewlett-Packard Co.

Because there are several different networking technologies
(e.g., token ring network, Ethernet, fiber distributed data
interface (FDDI)), our instruments need different hardware
sets for data acquisition and analysis and different external
connector types for connection to the network. In the past
we accomplished this by offering different interface mod
ules (pods) cabled to the base instrument (mainframe). Con
sidering how to handle different network technologies led to
our fourth major design decision which was to integrate the
pods into the mainframe so that nothing external would be
required or would hang off the instrument and get in the
way during operation. These integral pods needed to be easy
to install and remove. The difference in networking technol
ogies also required that the network line and event status
LEDs on the front panel (up to 12 pairs with each pair con
sisting of one red and one green LED) be easy to relabel
since different network types have different numbers and
types of lines and different nomenclatures.

Another important design constraint was the requirement
that the user be able to operate the instrument conveniently
on a desktop and on the floor. Frequently our customers
need to make their network connections in a small control

room, a closet, or around the back of a patch panel where
tabletop space is unavailable.

Since many of our customers are third-party network service
providers who travel with the instrument to their customers'
sites, the instrument had to be truly portable and rugged.
This meant that it had to fit under an airline seat and weigh
less than 33 Ib (we set a target of 20 Ib and achieved 25 Ib
with a fully configured instrument). This also meant that we
needed a carrying case not only for the instrument but also
for appurtenances such as interface cables and different
interface modules.

Many of our customers are network managers who do not
routinely move their instruments from place to place. There
fore, we wanted a configuration that would work well with
an external color monitor, preferably one that could support
the monitor on top of it so as to use as little desktop space
as possible.

Lastly, we wanted a package that made a true contribution
to manufacturability by being very easy to assemble and ser
vice. Therefore, we wanted to eliminate as many fasteners

Display Housing

Display Rear Cover

Shielded LCD Signal Cable

LCD Backlight Cable

LCD Cable Bracket

Fig. 2. Display housing and other
components for the color LCD
panel.

42 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

and small parts as we could. We also wanted this package to
be as flexible as possible for maximum longevity and reuse.

Design Concept
The design decisions described above resulted in the follow
ing implementations for the Network Advisor package.

Display Housing. The choice of a VGA flat-panel display dic
tated a design concept in which the display rotated or other
wise moved into \iewing position. To make it stationary on
the front panel would have made the instrument too large or
required an upright package similar to the HP Integral porta
ble scientific computer â€” a design ill-suited for floor opera
tion or for use with an external monitor. Rotating the display
up and back into position as is done with a laptop was
equally unsuitable. Rotating the display up and forward puts
it in good viewing position above the keyboard for desktop
operation, and rotating it a bit farther puts it in good posi
tion for floor-standing operation with the instrument stand
ing on its rear feet. The display housing unit has two pivot
arms at its bottom corners (see Fig. 2). The right pivot arm
carries the friction clutch that holds the display in any posi
tion. The left pivot arm routes and protects the display sig
nal and backlight cables. In addition, the left pivot arm has a
short, molded circular protrusion which acts as a shaft. This
shaft gets captured between semicircular features molded
into the front panel and a front-panel rear cover piece which,
when the pieces are assembled together, form a bearing (see
Fig. 3). This bearing captures the shaft for rotational support
of the left side of the display housing unit. In its folded-away
position, the display resides in a recess molded into the
plastic top chassis.

Even in its folded-away position, the front of the display is
exposed, and a cover piece is required to protect the display
during travel. This protective lid has side latches that snap
onto the top chassis. The side latches are pressed inward to
release the lid, whereupon it is rotated up and back (see Fig.
4). After the display is raised, the lid is again closed and

Fig. travel. The protective lid used to protect the display during travel.
Also shown is the location of the detachable pod assembly which
snaps into the underside of the mainframe of the Network Advisor.
The pod assembly is discussed later in this article.

latched. The lid also acts as the platform to support an ex
ternal monitor when the display is left folded away (a user
must software-select which display is on at any one time to
keep the internal display from overheating when closed). A
large, polycarbonate label covers the underside of this lid to
hide the extensive ribbing needed for stiffness.

Keyboard. The full-size keyboard is hinged onto the front
panel where, in its closed and latched position, it protects
itself and the front panel. It unlatches and rotates into posi
tion on two custom shoulder screws. Nylon-inserted lock
nuts captured in each end of the plastic keyboard housings
keep the shoulder screws from backing out against the key
board rotation. A crescent spring washer sandwiched be
tween a flat washer (to protect the plastic from galling) and
the underside of each shoulder screw head provides friction

D i s p l a y A s s e m b l y

Fig. 3. Front panel and front-
panel rear cover showing the
semicircular features molded into
both parts, which form a bearing
for holding the display housing in
place.

October e w l e t t - P a c k a r d J o u r n a l 4 3
© Copr. 1949-1998 Hewlett-Packard Co.

to hold the keyboard in any position for typing (see Fig. 5).
Normally the keyboard is simply rotated until it rests on the
desktop at a seven-degree angle for comfortable typing.
When the instrument is standing vertically on its rear feet
for floor operation, the keyboard rotates around to a stop so
that in is in a comfortable position for typing while sitting in
front of the instrument (see Fig. 1). While not easily detach
able, the keyboard is removable in the event that a user
wishes to use a standard 101-key keyboard instead of the
one provided. An adapter cable is provided for this purpose.

More than any other feature, the keyboard, folded in a verti
cal position when closed, determined the height of the
instrument. The keyboard and the need for a full-length PC
card determined the width of the instrument. The overall
length was determined by the components inside the instru
ment, with consideration given to how tall the package stood
in its floor-standing mode.

Top and Bottom Chassis. The bottom chassis acts as the
foundation on which all other subassemblies rest (see Fig.
6a). It measures 3.2 inches high by 14 inches wide by 14.2
inches long and is molded in a 600-ton press. To reduce the
number of screws, many molded features act either as snap-
fit receptacles or anchors for other parts and assemblies.
Major assemblies such as the front panel, handle, and rear
panel drop vertically into molded grooves and are held in
place until the installation of the top chassis captures and
anchors them by the addition of four screws. The top chas
sis (Fig. 6b) is roughly the same size as the bottom and is
molded in the same press. Tabs on the top chassis mate to
slots in the front panel and front-panel rear cover to anchor
that assembly and provide good seam contact for EMI
suppression.

Pods. The interchangeable interface modules (pods) house
the data acquisition and analysis hardware and the connec
tors for the physical interface to the network. A plastic
molded housing forms the bottom section of the pod con
tainer. A pair of painted and screened sheet-metal covers are
lap-joined together using flathead screws, countersunk
punched holes in one piece, and press-in floating fasteners
in the other to form the top section of the pod container (see
Fig. 7). This was done to compensate for assembly tolerance
stackup and to allow for easy assembly of different network
connector types and combinations. The printed circuit
boards mount to each other via board-to-board connectors
and snap-mount, press-in standoffs. The printed circuit
board subassembly then snap-mounts to press-in standoffs in

Front-Panel
Cover

Bottom Chassis

(a)

Crescent Spring

Fig. 5. Keyboard connection to the front panel.

(bi

Fig. top (a) The bottom chassis of the Network Advisor, (b) The top
chassis of the Network Advisor.

44 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Metal Covers

IEEE 802.5
(Token Ring! Board

IEEE 802.3
(Ethernet) Board

Pod Housing

Main Pod Board

(a) (b)

Fig. how (b) assembly, (a) The three main components of the pod and how they go together, (b) The assembled pod.

the sheet-metal covers. The whole assembly then screws to
the plastic pod housing.

An assembled pod mounts on the underside of the mainframe
(see Fig. 4) using four quarter-turn fasteners. The quarter-turn
studs are captured, but float freely in the pod housing and
mate to receptacles that are ultrasonically installed in the
bottom chassis. All of the standard PC signals are bused
from the mainframe to the pod through a 140-pin connector
pair which automatically mate during pod installation. The
pod cannot be installed incorrectly. The network interface
connectors are mounted along the side of the pod, which
puts them in easy reach for connection to the network, espe
cially in floor-standing operation. The exposed sheet metal
front panels of the pod through which these connectors pro
trude are recessed to keep the connectors protected. How
ever, this configuration reduced the internal width available
in the pod for printed circuit boards. A full-length, standard
PC card was too long to fit in this width. Therefore, two
plastic molded end caps were tooled to allow for the inclu
sion of the PC card. In this case, the sheet metal, no longer
exposed, is reduced to a single, flat, unpainted piece which
helps retain the end caps and close up the pod. The pod can
accept either one full-length and one 3/4-length, low-profile
PC card, or our custom LAN data acquisition boards, but not
both simultaneously. Because we offer some products in the
form of PC cards for use in customers' existing network
computers, these cards can also be put into pods for use in
the Network Advisor. One example of this is the HP 4957PC
wide area network analyzer, which is on a PC card. With this
feature, a customer can install an HP 4957PC into a pod to
make the Network Advisor into a WAN analyzer.

Bottom Feet. Along the bottom of the pod housing are molded
two long rails that "join" the front and rear bottom feet
molded into the bottom chassis. These rails are 0.5 mm
shorter in height than the chassis bottom feet. This ensures
that while the bottom feet are always the ones to bear the
weight of the instrument, they do not catch the back of a
user's leg when the instrument is carried by its padded,
flexible side handle.

Rear Panel. The molded rear panel mounts the line filter/fuse
module, the fan, and the external PC ports printed circuit
board, which provides two serial ports, one parallel port,
and one video port (see Fig. 8). The area behind which the
PC ports board mounts is formed using mold inserts to allow
easy changes in the number and configuration of connectors
(e.g., adding HP-IB or SCSI). A fan grill and cage are molded
into the panel so that the fan can be snapped into the panel
without the use of fasteners. A molded-in feature acts to
capture the RAM backup battery in the bottom chassis when
the rear panel is installed. All text and graphics (connector
labels, line information, safety warnings) are molded-in on
mold inserts to make them easy to change or repair. Also,
text is indented in the plastic (raised on the inserts) and
molded into shallow recesses to accept labels to cover the
text if it becomes necessary (e.g., labels for different lan
guage versions). A long label was added to accept new
warning and regulatory messages as they become necessary.

Tooling and Molding
HP's Palo Alto Fabrication Center (PAFC) molds most of the
Network Advisor's plastic parts. Mobay's Bayblend FR1441
polycarbonate/ABS blend was chosen as the basic material

(ictohcr 1ÃIÃI2 Hewlett-Packard Journal 45
© Copr. 1949-1998 Hewlett-Packard Co.

Line Filter/Fuse
Module

External
Ports Board

Bottom
Chassis

Fig. Advisor. Components attached to the rear panel of the Network Advisor.

for its combination of strength, moldability, appearance, and
price. Two parts, the display cover lid and the display hous
ing rear cover (both large, thin parts), required FR1439,
which has a higher percentage of ABS, for increased mold-
ability to prevent warping and to reduce blush. Two small
parts (molded by a second vendor), the snap-on side feet
and the snap-on rear mounting screw covers, use GE's Lexan
920 straight polycarbonate. While we feared a noticeable
gloss difference between the blended and straight materials,
our fears were not realized and the match has been good.
The snap-on display lid latches also use this material for
strength reasons. They have a molded-in cantilever spring
that provides the force to return them to their home posi
tions after unlatching. Straight polycarbonate with its higher
allowable strain rates and creep resistance was needed for
these springs. The friction clutch arm bears the brunt of the
display housing support and torque when moving the dis
play. For this reason, it is molded in a 40% glass fiber filled
polycarbonate for strength and stiffness. The keycaps are
molded in polyester to allow sublimation printing of the
three keycap legend colors.

All external cosmetic surfaces are textured using an HP
frosted grain III specified as 0.001 inch deep on typically
2.5Â° draft. Some surfaces, however, were designed with
only 1.5Â° draft. On these surfaces, the texture is specified
as 0.0005 inch deep to avoid possible ejection problems.

' A draft is a sl ight angling of the vertical walls of an injection mold to allow the molded part to
separate from the mold.

As mentioned previously, the display housing and display
housing rear-cover molds were designed with two sets of
inserts to accommodate the color or monochrome LCD dis
play. The color LCD has the larger active area opening and
requires different mounting boss height and location.

The handle-mounting piece and the front-panel rear cover
piece are about the same size and weight. As a result, they
were put into a family mold to save on both mold cost and
part cost. This later had the disadvantage of changing two
parts when only one, the handle mount, needed its thickness
reduced. Additional work was then needed on the front-
panel rear cover to compensate for the reduction in the
mold separation line.

During the lab prototyping phase, we soft-tooled the entire
box using urethane molds for parts over 40 square inches
and aluminum tools for the smaller parts (a process limita
tion). The vendor worked directly from IGES translations
of our 2D, undimensioned HP ME 10 drawings. The parts
had molded-in color and texture but were soft and capable
only of limited structural and temperature testing. The
smaller parts, molded in aluminum tools, were molded in
their proper materials, which allowed thorough structural
testing of these parts. While this process produced high-
quality parts that were very useful in our evaluation, the
process was costly and took much longer than the vendor
estimated.

With an all-plastic enclosure, we knew that shielding tech
nology would become a critical factor. From the outset, we
planned on vacuum-deposited aluminum for this job. This
technology was available in very few places. Also, the size of
some of our parts (requiring up to 600-ton presses) limited
the molder selection greatly. However, one molder had up to
1000-ton presses and the ability to do vacuum deposition
in-house. This vendor selection later proved to be unfortu
nate for two major reasons. First, they relied heavily on cut
ting cavities in the parent steel. Many of our parts have deep
ribs and intricate features which, later experience would
show, would have been more easily polished and otherwise
tuned had they been formed using mold inserts. While more
costly up front, inserted molds would have saved us time
and money during the tool tryout and tuning phase of our
product development. In some cases, attempts at changing
the parent steel, especially polishing of deep ribs, caused
mold damage that could not be fixed, leaving some parts
permanently out of specification. In these cases, unfortunate
and costly design changes were necessary.

The second reason was that we found out very late in the
tool tryout phase that the molder could no longer supply us
with molded parts. During the ensuing turmoil we initiated
our contingency plan of moving the molds to PAFC, which
had recently installed a new 550-ton press capable of mold
ing our larger parts. This transition would have been signifi
cantly more painful if our materials department had not
planned for it.

' IGES (Initial Graphics Exchange Specification) is a file format that is used to describe models
created with CAD programs.

46 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Environmental Testing
The 2-to-3-um-thick vacuum-deposited aluminum coating
proved to be an ineffective shielding technology with which
we experienced flaking problems, especially during humid
ity testing. Our search for an alternative included nickel-
based and copper-based paints, electroless copper plating,
and zinc arc spraying (ZAS). After tests and evaluations of
the controllability of the processes, we opted for ZAS, a ca
pability that PAFC had in-house. While this has proven to be
more costly than vacuum-deposited aluminum, it has al
lowed us to meet our targeted CISPR 11 radiated emissions
specification. Initially, because the silicon ZAS masking fix
tures are soft and flexible for easy cleaning, the force of the
spray would sometimes blow the mask away from the part
allowing zinc overspray to get on the cosmetic surfaces.
Reinforcing the masks brought the process under control.

Many of our part interfaces were designed with 2-to-3-nm-
thick aluminum coating in mind and therefore had very small
clearances. The move to 0.003-to-0.007-inch-thick zinc caused
some clearances to become interferences. In some cases,
this required tool modifications to make parts thinner. For
tunately, in most cases this could be accomplished by simply
shaving the core-side parting line and readjusting shutoffs if
necessary. In other cases, costlier tool modification requir
ing welding and recutting was needed. However, in one case
welding was impractical and zinc had to be masked from
affected areas. While shielding effectiveness was reduced,
the ZAS process, coupled with other internal electrical and
cabling modifications, gave us enough margin to pass the
CISPR 11 specification.

The package was tested to the HP class Bl shock and vibra
tion desk ft was tested in closed-up-for-travel, desk
top (display up, keyboard down), and floor-standing config
urations in both color and monochrome display versions.
No unacceptable damage was sustained.

Cooling of the package is provided by an 80-mm-square
tubeaxial fan with a maximum airflow of 38 ft:3/min. Ambient
air is drawn in at the rear of the pod, across the pod elec
tronics, and up through the top of the pod into the bottom
chassis. Once inside the mainframe, it joins air coming from
the base of the front panel, goes across the power supply
and the PC system printed circuit board, and exhausts
through the rear panel. Our worst-case pod, dissipating ap
proximately 50 watts, experiences an air temperature rise of
only 16Â°C. The temperature rise in the mainframe is 12Â°C
above the system board and 19Â°C above the power supply.

1 ComitÃ© International Special des Perturbations Radioelectriques (International Special
Committee on Radio Interferencel.

All of these temperatures remain well below what we can
tolerate given the temperature limitations of the disk drives
and the LCD. The maximum allowable ambient operating
temperature of the hard disk drive and color LCD is 4CPC,
and that of the flexible disk drive and monochrome LCD is
45rC. The minimum allowable storage temperature of either
display is -25 C. Therefore, the full HP class Bl temperature
specification had to be waived in deference to these compo
nents. The monochrome LCD experiences extreme response
sluggishness at very low temperatures and washes out at
high temperatures (adjusting the contrast control does not
help). The color LCD experiences no such performance or
visual degradation at the temperature extremes.

The supersoak and condensation portions of our humidity
testing were not done because the LCDs and disk drives do
not allow them. The polarizers on the LCDs cannot tolerate
standing water for any length of time. However, we have an
optical film applied to both LCDs for anti-glare and protec
tion from scratching and chemical contamination. The other
humidity testing done on the instrument presented no
problems.

While our altitude testing indicated no problems, we learned
a valuable lesson regarding altitude effects. The large label
that covers the ribbing on the underside of the display cover
lid entraps air in the dozens of hermetically sealed pockets
it forms. When an instrument built at a 6000-foot altitude
(like Colorado Springs) made its way to sea level, these
pockets collapsed a little causing an unacceptable dimpling
effect in the label. As an interim remedy, we had to machine
vents into the top of one rib in each pocket to allow the
pressure to equalize. Later, 122 pins were added to the mold
to provide these vents.

ESD testing has shown no hard failures up to the 25-kilovolt
limit.

Acknowledgments
I would like to recognize the other major contributors to the
mechanical design effort. Ernie Hastings, the other product
designer on the project, had primary responsibility for the
keyboard and interface module designs. Mike Walker brought
his industrial design experience and expertise and his model
making abilities to the effort. Jim Young of HP Labs came to
us for three weeks to lend his industrial design talents and
to help us play "what if on ME 30, and John Hamand, who
spearheaded our materials efforts, played a critical role in
keeping the tooling process on track and in ensuring that the
switchover to PAFC as our molding vendor went smoothly.

October 1992 Hewlett-Packard Journal 47 © Copr. 1949-1998 Hewlett-Packard Co.

The Microwave Transition Analyzer;
A New Instrument Architecture for
Component and Signal Analysis
The microwave transition analyzer brings time-domain analysis to RF and
microwave component engineers. A very wide-bandwidth, dual-channel
front digital a precisely uniform sampling interval, and powerful digital
signal processing provide unprecedented measurement flexibility,
including the ability to measure magnitude and phase transitions as fast
as 25 picoseconds.

by David J. Ballo and John A. Wendler

As signal processing capabilities advance, modern micro
wave and radio frequency (RF) systems are becoming more
and more sophisticated. Pulsed-RF signals, once used only
for radar applications, are increasingly being used in com
munication systems as well. These signals routinely have
complex modulation within the pulse, especially frequency
and phase variations (see Fig. 1). Operating frequencies and
bandwidths continue to increase, placing additional demands
on the components of the systems.

Engineers responsible for the design and testing of such
components and systems often need to measure them under
the same dynamic conditions as those in which they are
used. For example, it may be necessary to measure a de
vice's response to phase coding or linear frequency chirp
inside an RF pulse.

Measurements with traditional frequency-domain instrumen
tation are often insufficient to characterize and understand
fully the operation of components in dynamic signal environ
ments. Before the microwave transition analyzer introduced
in this article, no single instrument could handle the diverse
range of measurements required for dynamic testing at micro
wave frequencies. In addition to the new measurements it
makes, this analyzer can perform many of the measurements
previously requiring the use of network, spectrum, dynamic
signal, and modulation analyzers, as well as oscilloscopes,
counters, and power meters.

Importance of the Time Domain
A key benefit of the microwave transition analyzer is that it
brings time-domain analysis to RF and microwave compo
nent engineers. In addition to its use in pulsed-RF testing,
the time domain is essential to characterizing and under
standing nonlinear devices because one can clearly and intu
itively see the relationship between the input and output
signals. As an example, both signals in Fig. 2 would appear
identical if displayed on a spectrum analyzer. Even if the
phase of the harmonics were known, the differences be
tween the signals would not be immediately obvious. When
viewed in the time domain, however, it is clear that signal 1

is clipped (the output of a limiter, say), while signal 2 has
crossover distortion (what might be seen at the output of a
Class-B amplifier, for example). Without the time domain,
engineers have had to guess at the underlying causes of ob
served frequency-domain behavior. The ability to view micro
wave signals in the time domain has also proved to be ex
tremely valuable to designers that are using CAE microwave
design simulators, such as HP's MDS. Now simulations
based on circuit models can be easily compared to actual
measurements in both the time domain and the frequency
domain.

Historically, most measurements on high-frequency non
linear devices have been performed in the frequency domain.
Often, this has been because of inadequacies in time-domain
instrumentation. When frequency-domain information is of
prime concern, spectrum analyzers are superb in their abil
ity to display harmonic, modulation, and spurious signals
with a large dynamic range. However, without the phase of
the frequency components, the time-domain signal cannot
be reconstructed. Network analyzers are excellent for per
forming linear, small-signal, frequency-domain testing, but
they are limited in their ability to characterize nonlinear
devices. The addition of harmonic and offset sweep capabil
ity in network analyzers has helped, but the time-domain
perspective is still missing.

For envelope analysis of pulsed-RF signals, spectrum ana
lyzers offer some limited time-domain capability. Recently,
network analyzers have been adapted for pulsed-RF time-
domain testing as well. Because of the architecture of these
instruments, the intermediate frequency (IF) bandwidth
imposes an upper limit on the measurement bandwidth. The
result is minimum measurable edge times of greater than
100 ns. The microwave transition analyzer's architecture
does not have this restriction. Edge speed is limited only by
the RF bandwidth. Consequently, magnitude and phase mea
surements on pulses with rise times as fast as 25 ps are pos
sible. Fig. 3 shows an example of a microwave transition
analyzer measurement.

48 October 1992 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

T r l = C h l
3 0 m U / d h
0 U r e f
(a)

525 ns
Tr2=Chl Tr3=Chi

30 mU/div 90 deg/div

0 U ref -27 deg ref

1 2 5 n s / d i v

,EXT

A mpl i tude / '

. Frequency

Time
2 3 . 9 2 u s

T r l = C h l T r 2 = C h l T r 3 = F M (C h i)
4 0 m U / d i v 4 0 m U / d i v E 5 0 k H z / d i v
0 Ã ¼ r e f 0 U r e f 3 G H z r e f

5 u s / d i v

FFT

itude

Frpc j i iR f icy

Ã.99B5 GHz 300 kHz/div 3.0015 GHz
Trl=Chl
10 dB/div

-25 dBm ref

(b)

Fig. 1. Examples of complex modulation, (a) A phase coded RF
pulse. The waveform and magnitude demodulation are shown in
the upper half. The carrier's phase with respect to a CW reference
is shown in the lower half, (b) Frequency modulation inside an RF
pulse. The waveform and magnitude demodulation are shown at
the top, the frequency demodulation is shown in the middle, and
the magnitude spectrum of the pulse is shown at the bottom.

The ability to measure narrow pulses in the time domain can
also be used to determine the impulse response (and there
fore magnitude, relative phase, and group delay) of frequency
translation components such as mixers and receivers. By
stimulating these devices with a narrow pulse of RF energy,
time-domain distortion can be directly observed. Often, it is
the time-domain distortion that, is of interest, even though it

may be specified indirectly as magnitude and phase flatness
versus frequency. By transforming the input and output
pulses to the frequency domain with the built-in fast Fourier
transform (FFT) and computing their ratio, the transfer
function is obtained. From this, familiar results of magni
tude and group delay versus frequency can be displayed.
Network analyzers are only able to measure the phase and
group to of frequency translation components relative to
a reference or "golden" device.

It is much easier to measure nonlinear devices at low fre
quencies than at RF and microwave frequencies. At low fre
quencies, general-purpose oscilloscopes readily show time-
domain behavior, and dynamic signal analyzers provide both
magnitude and phase in the frequency domain. The only tool
available for high-speed time-domain measurements before
the microwave transition analyzer has been the high-
frequency sampling oscilloscope. Initially, sampling oscillo
scopes were purely analog instruments, and in the past few
years have incorporated digital storage and other enhance
ments such as markers. However, these instruments have
not enjoyed widespread acceptance from RF and microwave
engineers for several reasons. The first is the difficulties
involved in achieving reliable external triggering at high fre
quencies and small signal levels. High-speed sampling oscil
loscopes have enjoyed the most success for use with digital
signals where voltage levels are generally large and triggers
are not difficult to obtain. Secondly, traditional sampling
oscilloscopes are not very sensitive, especially compared to
network and spectrum analyzers. The microwave transition
analyzer incorporates selectable filters to decrease noise
without limiting the signal bandwidth. The resulting increase
in sensitivity combined with internal triggering across the
full RF bandwidth greatly aids in the measurement of small
signals.

Excellent sensitivity also helps overcome a limitation of
sampling oscilloscopes for high-input-impedance measure
ments (>50 ohms). Until recently, it has been very difficult
to obtain probes with low enough parasitic capacitance to
be useful at microwave frequencies. Companies now offer
solutions for high-frequency passive probing, but signal at
tenuation is significant. This signal attenuation is not a prob
lem for the microwave transition analyzer because of its
high prob This has been especially beneficial for prob
ing monolithic microwave integrated circuits (MMICs) at the
wafer level.

Finally, the operation of high-speed oscilloscopes has not
been optimized for RF and microwave applications, where
terminology is often different from that used in digital design.
The user interface of the microwave transition analyzer uses
units and formats that are familiar to RF and microwave
engineers. For example, log-magnitude displays of pulsed-
RF signals are readily available, and marker annotation can
be in dBm or dBc as well as volts.

Microwave Transition Analyzer
The HP 71500A microwave transition analyzer (Fig. 4) is a
two-channel, sampler-based instrument with an RF band
width covering from dc to 40 GHz. The instrument is called
a transition analyzer because of its ability to measure very
fast magnitude and phase transitions under pulsed-RF con
ditions. However, this name does not encompass the full

October 1992 Hewlett-Packard Journal 49
© Copr. 1949-1998 Hewlett-Packard Co.

r \

\ 7 V7 _/
A

S i g n a l l

/ \

Signal 2

A A
V V

A

 / \

\ J \ J

Sum =
Fundamental

3rd Harmonic

A A

\J

A

T i m e T i m e

Fig. Signals appear analyzer of phase information in nonlinear design. Signals 1 and 2 would appear identical on a spectrum analyzer display.

range of its measurement capability. The microwave transi
tion analyzer can best be described as a cross between a
high-frequency sampling oscilloscope, a dynamic signal
analyzer, and a network analyzer.

Like a digital sampling oscilloscope, the microwave transi
tion analyzer acquires a waveform by repetitively sampling
the input, that is, one or more cycles of the periodic input
signal occur between consecutive sample points. However,
unlike an oscilloscope, the sampling instant is not determined
by an external high-frequency trigger circuit. Instead, the
sampling frequency is synthesized, based on the frequency
of the input signal and the desired time scale. A synthesized
sampling rate is an attribute that the microwave transition
analyzer shares with dynamic signal analyzers. Also in com
mon is an abundance of digital signal processing capability.
The FFT, for example, allows simultaneous viewing of the
time waveform and its frequency spectrum. However, unlike
a dynamic signal analyzer, the microwave transition analyzer

MKA)

M2(t)

31.8529 ns
31.703? ns

3 2 6 m U
9 2 . 4 9 m U r i 1H9.E3 ps

33.01 ns
Trl=Chl Tr3=Chl

125 mU/div 125 mv/div

0 U ref 0 U ref

5 0 0 p s / d i v

Fig. 3. The microwave transition analyzer can measure edge
speeds on modulated waveforms as fast as 25 ps.

does not have an anti-aliasing filter at its input. The sampling
frequency is automatically adjusted to achieve a controlled
aliasing of the frequency components of the input signal.
Finally, like a network analyzer, the microwave transition
analyzer can be configured to control a synthesized signal
source for the characterization of devices over frequency or
power ranges. It can also receive a frequency that is offset
from or a harmonic of the source frequency, and it can pro
vide frequency and power sweeps at a particular point within
a pulse of RF, on pulses as narrow as 1 ns.

Architecture
Fig. 5 shows a simplified block diagram of the microwave
transition analyzer. The analyzer has two identical signal
processing channels. Each channel samples and digitizes
signals over an input bandwidth of dc to 40 GHz. The chan
nels are sampled simultaneously (within 10 ps), permitting
accurate ratioed amplitude and phase measurements. A
single synthesized low-noise oscillator drives a step recov
ery diode, the output of which is split into two pulse trains
that drive the microwave samplers. The microwave sam
plers and the analog-to-digital converters (ADCs) are run at
the same frequency. The maximum sampling frequency is
20 MSa/s (20 million samples per second).

The signal at the output of the samplers is processed by a
10-MHz-bandwidth low-pass IF strip. The IF (intermediate
frequency) circuitry includes a programmable shaping am
plifier to compensate for the sampler's IF response roll-off,
60 dB of step gain to optimize the signal level into the ADC,
and variable low-pass filtering to remove noise and sampler
feedthrough. The trigger circuitry is at the end of the analog
path. Triggering on IF signals (instead of RF input signals)
allows the microwave transition analyzer to be internally
triggered to 40 GHz. Enhancements to the hardware trigger
are available through the use of digital signal processing.

Periodic Sampling
The mathematical analysis of periodic functions was begun
in the early 19th century by Jean-Baptiste-Joseph Fourier.
Fourier's theorem introduced the techniques for decomposing

50 October 1992 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Fig. and Named for its ability to measure very fast magnitude and
phase transitions under pulsed-RF conditions, the HP 71500A
microwave transition analyzer (top instrument) is part high-
frequency sampling oscilloscope, part dynamic signal analyzer,
and part network analyzer. The HP 71500A consists of the HP
78020A microwave transition analyzer module and the HP 70004A
mainframe. The bottom instrument shown here is the HP 83640A
synl hesized sweeper.

any periodic waveform into a sum of harmonically related
sinusoids. The Fourier series is a frequency-domain repre
sentation of the original time function and is used to sim
plify the description and provide insight into the function's
underlying characteristics.

The sampler in the microwave transition analyzer is driven
by a constant-frequency sampling signal. Because the sam
pler drive is periodic, Fourier analysis can be used to under
stand the sampler's operation. Often, periodic signals or
systems responding to periodic signals are described and
analyzed in the frequency domain. Transformations be
tween the time and frequency domains replace convolution
operations in one domain with multiplication in the other.

Filtering, a convolution operation in the time domain, is
more easily interpreted as frequency-domain multiplication.
Alternatively, a mixer multiplies two signals in the time do
main, but the result is expressed as frequency-domain
translation, a convolution operation. Why convolution is the
analytical mechanism for realizing frequency translation is
explained in "Frequency Translation as Convolution" on
page 61.

An ideal sampler driven by a periodic sampling pulse can be
considered a switch that briefly connects the input port to
the output port at a periodic rate. When the switch is closed,
the output signal is the input signal multiplied by unity.
When the switch is open, the output signal is grounded, that
is, the input signal is multiplied by zero. Thus, the signal at
the sampler's output is formed as the product of the input
signal and the periodic pulse defining the switch state as a
function of time. As in the mixer example on page 61, time-
domain multiplication results in frequency-domain convolu
tion. is frequency spectrum of the sampler's input signal is
convolved with the spectrum of the periodic pulse to produce
the spectrum of the sampler's output (IF) signal.

The frequency spectrum of a periodic pulse is composed of
delta functions at the fundamental repetition frequency and
all multiples (harmonics) of this frequency. This infinite set
of impulses in the frequency domain, sometimes called a fre
quency comb, inherits a magnitude and phase profile accord
ing to the time-domain pulse shape. A narrow, rectangular
pulse imparts a sin(f)/f roll-off characteristic to the frequency
comb. The first null of the response occurs at a frequency
equal to the reciprocal of the pulse width and the 3-dB atten
uation frequency occurs at 0.443 times this value. Funda
mental to wide-bandwidth sampling is achieving a very nar
row sampling pulse or aperture. The sampling aperture in
the microwave transition analyzer is less than 20 ps.

The sampling front end of the microwave transition analyzer
converts the high-frequency input signal to a low-frequency
IF signal suitable for digitization and subsequent numerical
processing. Depending on the application, three different in
terpretations of the sampling process are possible: frequency
translation, frequency compression, and a combination of
translation and compression.

CH2 Â»

M i c r o w a v e
Samplers

Fig. 5. Simplified block -lin (if the HI1 7ir>()()A microwave Inmsition analyzer.

October 1992 Hewlett-Packard Journal 51
© Copr. 1949-1998 Hewlett-Packard Co.

js A
la) BW

(b)

Sampler Output

â€¢MMÃ¯yÃ­MMM
(c)

ADC Input

(d)

Fig. 6. Sampling used to translate a frequency band, (a) Input
spectrum, (b) Sampling comb, (c) The sampler output spectrum
is the convolution of the waveforms in (a) and (b). (d) Filtered
output.

Frequency Translation
Nonrepetitive or single-shot events can be captured by sam
pling the input signal at a rate greater than twice the input
bandwidth. This is known as the Nyquist criterion. However,
maintaining this criterion does not imply that the sampling
rate must be greater than twice the input signal's highest
frequency. If the RF bandwidth of the sampler is adequate,
narrowband information on a high-frequency carrier can be
captured by low-frequency sampling, as long as a sampling
rate of approximately twice the modulation bandwidth is
maintained. Sampling the high-frequency signal translates
the signal to baseband.

Samplers are often used in place of mixers for frequency
conversion â€” for example, in the front ends of many general-
purpose network analyzers. In the case of translation only, a
given narrow frequency band is converted to baseband by
an appropriate choice of sampling frequency. Fig. 6 diagrams
the conversion process. The spectrum of the input signal is
shown in Fig. 6a and the frequency comb of the sampling
pulse is shown in Fig. 6b. The sampling frequency, that is,
the spacing between the teeth of the frequency comb, is
chosen such that the input spectrum lies appropriately posi
tioned between adjacent comb teeth. The convolution result
is shown in Fig. 6c.

Two important considerations in the choice of sampling fre
quency can be seen from these diagrams. First, the input
signal bandwidth (Fig. 6a) must be less than one half the
sample rate. Second, the sample rate must be chosen so the
input spectrum is entirely contained in a frequency range
bounded by the nearest sampling harmonic and the frequency
halfway to the next higher or lower harmonic. If these crite
ria are not met, the sampler will translate or alias more than
one component of the input spectrum to the same output
frequency, causing uncorrectable errors. The maximum sam
pling rate of the microwave transition analyzer is 20 MSa/s.
The rate is continuously adjustable (in 1-mHz steps) down

to a minimum rate of 1 Sa/s and can be phase-locked to an
external 10-MHz reference.

The signal at the output of the sampler is amplified and low-
pass filter before analog-to-digital conversion. This filter
ing virtually restores the original input spectrum, but it is now
centered in the much lower IF range (Fig. 6d). Because the
filter transition from passband to stopband is not immedi
ate, some undesired high-frequency energy may be included
in the signal presented to the ADC. In this case, the band
width of the signal at the ADC exceeds half the sample rate.
Aliasing occurs as the highest-frequency components are
folded back on top of the original translated spectrum by
the sample-and-hold circuit of the ADC. However, unlike
the aliasing problems mentioned in the previous paragraph,
the effects of this aliasing can be predicted and corrected
in software because the aliased components represent
redundant information.

In summary, using a sampler with a bandwidth many times
the sample rate allows the capture of single-shot events in
the modulation on a high-frequency carrier (see Fig. 7). The
analysis bandwidth is limited to half the sample rate.

Frequency Compression
A second, fundamentally different perspective of the sam
pling process is useful in the measurement of periodic high-
frequency signals. Traditionally, these measurements have
required trigger-based repetitive sampling techniques. In the
microwave transition analyzer, precision RF trigger circuitry
is not used. Periodic sampling alone is used to convert a
strictly periodic input with harmonic components spread
across a very wide bandwidth to a low-frequency signal with
harmonic components spread over the narrow IF range. This
is accomplished by choosing a sampling frequency that con
verts each component of the input signal into the IF such that
the harmonic ordering, magnitude, and phase relationships
of the original input are preserved in the IF signal. The sam
pling process effectively compresses the wide-bandwidth
input signal into a low-frequency signal at the IF.

50 us/div

Trl=Chl
15 mU/div

0 V ref

Tr3=Chl
15 mU/div

0 V ref

Fig. 7. Turn-on characteristic of a synthesizer's output amplifier.
This single-shot measurement was internally triggered on the
signal that originated from the enabling of the RF output of the
synthesizer. The carrier frequency is 5 GHz.

52 October 1992 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Sampler Output

fs

Fig. 8. Sampling used to frequency compress a periodic input
signal, (a) Input signal spectrum, (b) Sampling comb, (c) Expand
ed frequency scale showing the relationship between the input and
the sampling signal components, (d) The sampler output signal is
the convolution of the waveforms in (a) and (b).

Fig. 8 illustrates the concept in the frequency domain. The
input spectrum and frequency comb of the sampling pulse
(including the RF response roll-off) are shown in Figs. 8a
and 8b. Fig. 8c provides a close-up view of the relative posi
tioning of the comb lines with respect to the input signal.
The sampling rate is chosen such that a given harmonic (the
nth) is positioned x Hz below the input's fundamental fre
quency. Then, the (2n)th sampling harmonic will be posi
tioned 2x below the input's second harmonic, the (3n)th
sampling harmonic will be 3x below the input's third har
monic, and so on. Fig. 8d shows the result of the convolu
tion. Each harmonic of the input is converted to a corre
sponding harmonic of the low-frequency signal at the IF.

The sampler does not have infinite bandwidth, and the
sin(f)/f roll-off of the sampling comb attenuates the IF re
sponses that correspond to input components at the higher
frequencies. Small amounts of attenuation may be compen
sated for in software, however, after the signal is digitized.
The combination of a very narrow sampling aperture and
software corrections allow the microwave transition analyzer
to specify a flat response to 40 GHz.

Viewing this process in the time domain, the sample interval
is set to be a multiple of the input period plus a small amount
equal to the effective time between points (Fig. 9). Since the
sampling interval is not an exact multiple of the input period,
the sampling instant moves with respect to the input at a
prescribed increment as the samples are acquired. The effec
tive time between points is determined by how close the sam
pling frequency is to a subharmonic of the input frequency.

Compression Factor. The signal at the IF is a replica of the
input signal, but at a much lower fundamental frequency.
\\lien this signal is digitized and displayed, the waveshape
matches that of the input. The time range indicated on the
display is calculated by dividing the real time (sample period
times trace points) by the compression factor (input frequency
x l/x, where x corresponds to the fundamental frequency at
the IFâ€” see Fig. 8):

Time Span =
(Sample Period) (Number of Trace Points)

(Input Frequency)/x

When the microwave transition analyzer is used for repeti
tive and the input signal must be strictly periodic, and
the period must be known to high accuracy. If the frequency
that the analyzer assumes for the input signal is near but not
exactly equal to the frequency of the signal being measured,
the IF will be shifted in frequency by an amount equal to the
difference. The resulting measurement will show an erro
neous time scale, the error equal in percentage to the fre
quency error of the IF signal. Thus, a small RF inaccuracy
can result in a very large time-scale error. The ability to fre
quency-lock the microwave transition analyzer's sampling
rate to the signal being measured (by sharing a common
reference frequency with the stimulus), removes this source
of error. The resulting time scale accuracy is specified to 1
ps â€” better than any current trigger-based oscilloscope.

Triggering. To keep the display "triggered," low-frequency
trigger circuitry is connected to the IF signal and used to
initiate the storage of a data record relative to a rising or
falling edge. Data samples in the buffer before the trigger
occurrence are displayed as negative time (pretrigger view).
Through the combination of periodic sampling and a low-
frequency trigger circuit, the microwave transition analyzer
is able to trigger internally on periodic signals across the full
40-GHz input bandwidth and offer negative-time capability
without delay lines.

IF Filtering for Noise Reduction. As mentioned earlier, the sig
nal at the output of the sampler is low-pass filtered before
analog-to-digital conversion. In Fig. 8d the bandwidth cho
sen for this filtering is less than half the sampling rate. Any
IF components above the band edge of the filter correspond
to input harmonic components beyond the specified input
bandwidth of 40 GHz and may be filtered off. Filtering the IF
signal to a bandwidth narrower than half the sampling rate
means that not all of the noise across the 40-GHz input band
width is converted to noise on the IF signal. Thus, noise is
removed from the displayed signal without affecting the

Fig. 9. Periodic sampling in the time domain.

October 1992 Hewlett-Packard Journal 53 © Copr. 1949-1998 Hewlett-Packard Co.

Trl=Chl Tr2=Meml
2.03 mv/div 2.03 mU/div

-HBB uU ref -BHB uU ref

200 ps/div

Fig. 10. Filtering the IF signal removes noise but retains the
underlying wave shape.

waveshape. The result is cleaner displays and improved
sensitivity (by more than 20 dB) compared to conventional
trigger-based sampling oscilloscopes (see Fig. 10).

Translation and Compression
The perspectives of translation and compression are com
bined to analyze the third use of the microwave transition
analyzer's sampling front end. The application is measuring
signals composed of broadband, periodic modulation on a
high-frequency carrier. Examples include pulsed-RF signals
with narrow pulse widths or fast edge speeds. Proceeding as
before, the spectrum of the input signal and the frequency
comb of the sampling pulse are shown in Figs, lla and lib,
respectively. Fig. lie has an expanded frequency scale show
ing the relative positioning of the input's spectral lines and
those of the sampling pulse. Two variables, x and y, are intro
duced in this figure, and are related to the concepts of com
pression and translation, respectively. The sampling frequen
cy is chosen such that the signal's pulse repetition frequency
(PRF) is slightly greater (x Hz) than a multiple of the sam
pling rate. In other words, the time between sampling
instants is slightly greater than an integral number of input
pulse repetition periods. As can be seen from the diagram,
the frequency separation between a given signal component
and the nearest sampling harmonic increments by x Hz
when considering the next-higher signal component. Conse
quently, the spacing of the corresponding components in the
sampler's output signal is x Hz, resulting in a compression
factor of PRF/x.

In Fig. lie, the spectral center of the input signal is shown
to be offset by y Hz from the nearest sampling harmonic.
Therefore, the signal at the output of the sampler is centered
at y Hz, as shown in Fig. lid. If the offset y is allowed to
decrease by a change in the input carrier frequency, the sam
pler output components are translated toward one another
as indicated by the dashed arrows. If y becomes too small,
the components will partially overlap and distort the spec
trum. Likewise, if y is increased, the sampler's output com
ponents move opposite to the directions indicated and will
overlap as y approaches half the sampling rate.

For a given pulsed-RF input signal with an arbitrary carrier
frequency, the values of x and y cannot be independently
controlled by adjustments in the sampling rate alone. If the
sampling rate is set to achieve the desired compression fac
tor (PRF/x), there is no remaining degree of freedom for
adjusting the spectral offset (y) to avoid overlap. One solu
tion is to provide a mechanism for automatically adjusting
the carrier frequency under control of the microwave transi
tion analyzer. In many cases, the microwave transition ana
lyzer is used in a stimulus-response configuration similar to
that of a network analyzer. If the carrier source is under
control, the carrier frequency control can be used to adjust
the spectral offset independent of the sampling rate.

Often, however, the microwave transition analyzer does not
control the carrier source, or it is desired that the carrier
frequency not be modified. In these cases, the simultaneous
requirements on the sample rate are achieved by slight mod
ifications to either the requested time span or the number of
trace points. The parameter to be modified is determined by
the user. Remembering that the displayed time span is equal

4 0 G H Z

4 0 G H Z

S a m p l i n g
C o m b

y - x y+x

S a m p l e r O u t p u t

Fig. 11. Sampling used to analyze periodic wideband modulation,
(a) Input signal spectrum, (b) Sampling comb, (c) Expanded fre
quency scale showing the relationship between input and sampling
signal components, (d) The sampler output signal is the convolution
of the waveforms in (a) and (b). (e) The IF spectrum on an expand
ed frequency scale, showing the spacing of the signal components.

54 October 1992 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

3 7 . 4 n :
T r 1 = C h 1
E 5 m U / d i

(a) 0 U r e f

5 0 0 p s / d i v

3 5 . Â « 1 5 0 0 m s . 9 B O O n s â € ¢ 4 O . * * B O O n

(b) = 5 O O
m v o I t s / d 1 â € ¢

D s / d Ã ­ v
O f - f s e t
D e l a y

O . O O O V o l t s
â € ¢ 3 - 7 . 3 B O O n s

Fig. sampling Most transition signal processing algorithms require sampling the input signal at a uniform interval, (a) In I he microwave transition
analyzer, sampling rely is driven at a synthesized rate, resulting in very precise sample timing, (b) Conventional sampling oscilloscopes rely
on high-frequency trigger circuitry for timing accuracy, so the sampling interval can be considerably more uncertain.

to the real time divided by the compression factor, the
following equation results:

Time Span =
(Sample Period) (Number of Trace Points)

PRF/x

Since the input PRF is a constant and x is a function of the
PRF and the sampling rate (see Fig. lie), the above equation
relates the three variables: time span, number of trace points,
and sampling period. Fixing either the time span or the num
ber of trace points and slightly adjusting the other quantity
results in a small change in the sampling period. A small
change in sampling rate causes a much larger shift in the har
monic nearest the input carrier. In this fashion, the centering
of the spectrum at the sampler's output is controlled.

Numerical Processing
Discussion to this point has concentrated on how the sam
pling process can be used to translate and/or compress a
high-frequency input signal into a low-frequency signal at
the IF suitable for digitization. Equally important for the
microwave transition analyzer is the processing done on
the signal after it has been digitized. Conventional digital
signal processing algorithms, such as digital filtering,

demodulation, and FFT analysis, assume that the input
signal has been sampled at an exact, uniform rate. In the
microwave transition analyzer, the sampling interval is syn
thesizer-based, resulting in sample-to-sample timing that is
precisely uniform. A single trigger event initiates the storage
of an entire trace of data. By contrast, conventional sam
pling oscilloscopes rely on high-frequency trigger circuitry
to provide a consistent sampling interval. Since a different
trigger event is used for the measurement of each data point,
any triggering uncertainty results in sample-to-sample timing
variations. Because the triggering accuracy is dependent
both on the (trigger) signal characteristics and the amount
of trigger delay selected, the resulting sampling interval can
become significantly nonuniform under certain conditions,
reducing the options for further numerical processing (see
Fig. 12).

Analytic Signal Representation. One of the first operations
applied to the sampled data is the creation of the quadrature
function using the Hubert transform. This quadrature func
tion is combined with the original data to form a complex-
valued representation of the waveform called the analytic

signal. Just as complex-valued phasor representations
simplify the analysis of linear circuits, the analytic signal

October 1992 Hewlett-Packard Journal 55
© Copr. 1949-1998 Hewlett-Packard Co.

simplifies the manipulation and analysis of modulated wave
forms. Use of the analytic signal representation also allows
for vector normalization of traces, an operation normally
found in network analyzer systems.

RF and User Corrections. One of the more obvious uses for
additional processing of the sampled data is to compensate
for nonideal conditions in the analog circuitry. As men
tioned, the sampler has a frequency response characteristic
largely determined by the aperture time of the sampling
pulse. The magnitude response of the sampler is measured
at the factory and stored inside the analyzer. This data is
then used to correct for the sampler roll-off in subsequent
measurements. Regardless of whether the sampler is used
for translation or compression, an assumed, unique mapping
exists between IF frequency and input RF frequency. When
the IF signal is digitized, an FFT is used to convert the re
sponse into the frequency domain. The IF frequencies are
mapped into RF frequencies, the appropriate correction at
each frequency is applied, and the result is then transformed
back to the time domain for display. The same processing
routines are also available for user-definable filtering or
corrections. User-defined corrections are useful in compen
sating for cabling or fixturing losses. Filtering applications
might include simulating the magnitude and phase charac
teristics of a transmission channel to predict what effects
the channel will have on specific signals.

Frequency-Domain Measurements Using the FFT. The ability to
execute transformations quickly between the time and fre
quency domains is important to the operation of the micro
wave transition analyzer. These tasks are accomplished by a
pair of digital signal processing chips (one per channel)
tightly coupled to the ADC memory. If the user requests a
frequency-domain display, the signal is shown after frequen
cy corrections are applied without the transformation back
to the time domain. Separate frequency-domain controls
allow the user to zoom in on a narrow portion of the original
frequency span. This is accomplished by processing a longer
time record with the FFT and displaying only part of the
frequency outputs.

As mentioned above, the microwave transition analyzer as
sumes a unique mapping between the IF and RF frequencies,
resulting in a replicated version of the input signal at the IF.
However, if a second, unrelated signal is present at the input,
it too is converted to the IF and becomes part of the sampled
signal. The components of this second signal will fall at seem
ingly to IF positions and will not correspond at all to
the IF-to-RF mapping that the first signal obeys. Except for
the operating mode described below, the microwave transi
tion analyzer is designed, like most oscilloscopes, for the
measurement and display of a single signal.

If multiple, nonharmonically related signals are known to be
present at the input, the microwave transition analyzer can
be instructed to measure these signals independently using
the table mode of operation. In the table mode, the funda
mental and harmonics of up to five signals are measured,
using the FFT to measure each component of each signal
individually. The sampling frequency is chosen to avoid con
verting different spectral components to the same frequency
at the IF. The results are displayed in tabular form (see Fig.
13). The table can be updated continuously for only one of
the signals or for all of them. If a waveform display is desired,

source: CHRN1

2.000000000 GHz
x 2
x 3
x 4

2.123456003 GHz
x 2
x 3
x 4

123.4559973 MHz
x 2
x 3
x 4

-12.40 dBm

-37.13 dBc
-10.94 dBc

-44.43 dBc
-22.75 dBm
-17.01 dBc

-13.28 dBc
-44.26 dBc
-15.25 dBm
-34.21 dBc
-29.11 dBc
-44.47 dBc

0.0 deg
-114. B deg
-176.7 deg
13. B deg

deg
deg
deg

-60.9 deg
0.0 deg

152.8 deg

-113.2 deg
19.3 deg

10.
B3.

(a)

GHz

2
3
4
5
B
7

B
9
10
11
12

-12.39 dBm
-38.47 dBc
-10.94 dBc

-50.26 dBc
-33.28 dBc
-37.77 dBc
-44.59 dBc
-56.55 dBc
-58.75 dBc
-57.24 dBc
-66.49 dBc
-56. B4 dBc

-93,
-176
16
19
115
-67

deg
deg
deg

deg
deg
deg
deg

-37.9 deg
13.2 deg
125. E deg
-67.3 deg
-19.7 deg

(b)

Fig. (a) Microwave transition analyzer table mode displays, (a)
The output of a mixer shown in the time-domain display at the top
is the the of several signals. The table displayed at the
bottom provides information about the frequencies present, (b)
The table is configured to display information for only one of the
signals present. The second trace at the top is constructed from
this measurement data.

a data trace can be constructed according to the table values
and the specified time span. This capability allows the micro
wave transition analyzer to display time-domain signals in a
frequency-selective fashion, combining some of the attributes
of both oscilloscopes and spectrum analyzers.

Phase Trigger. Another use of the microwave transition ana
lyzer's FFT resources is in measuring low-level or noisy sig
nals. Trace averaging is used by oscilloscopes to reduce
noise on a displayed waveform. However, averaging can
work only if the waveform is reliably triggered, which is
difficult on low-level or noisy signals. In the microwave tran
sition analyzer, waveform capture is not dependent on reli
able triggering, but on knowing the input frequency and sam
pling at the proper synthesized rate. If at least one period of
the signal is collected into memory on every sweep, the trig
ger point will always be somewhere in this record of data.
The microwave transition analyzer introduces a special

56 October 1992 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Trl=Chl Tr2=Chl

500 uU/div 500 uU/div
-240 uU ref 0 U ref

p s / d i v

Fig. with \Tery small or noisy signals can be reliably triggered with
the microwave transition analyzer's phase trigger. Sweep-to-sweep
averaging can then be used to reduce the noise.

trigger mode, called phase trigger. The trigger value is speci
fied in terms of the phase of the fundamental component of
the signal. An FFT is used to measure the phase of the fun
damental at the midpoint of the time record. From this, the
index in the record that corresponds to the trigger point is
determined, and the correct portion of the record is copied
to the display trace. Although the trigger point in the larger
memory record may move about from sweep to sweep, the
display trace stays triggered. The result is that processing
gain (via the FFT) has been applied to extract the trigger
information, allowing stable triggering on even very noisy
signals (Fig. 14). Trace averaging can then be used to reduce
the noise on the displayed waveform.

Component Test Systems
Electronic components are most often tested by measuring
their response to a given stimulus. The stimulus source can
be anything from an impulse generator to a sweep oscillator
or a synthesizer. The measurement instruments include os
cilloscopes, spectrum analyzers, and dedicated receivers.
Stimulus and measurement functionality are frequently com
bined to form a stimulus-response system. Network analyz
ers, spectrum analyzers with tracking sources, and oscillo
scopes with built-in step generators are examples of systems
in which the stimulus source is controlled directly by the
measurement instrument. The microwave transition ana
lyzer, with its built-in pulse generator and ability to control
synthesizers over a private HP-IB (IEEE 488, IEC 625), can
be configured as a versatile stimulus-response system for
component or system test.

An advantage of configuring the microwave transition ana
lyzer as a stimulus-response system for time-domain mea
surements is that the analyzer is always certain of the signal
frequency. Configuring the stimulus under the control of the
microwave transition analyzer and sharing a common 10-MHz
reference ensures agreement between the assumed and ac
tual input frequencies. Additionally, indirect adjustment of
the stimulus via the controls of the microwave transition
analyzer allows interesting new time-domain capabilities.
One is the ability to hold a fixed number of signal periods on

the display regardless of the stimulus frequency. In other
words, the time range is automatically updated at any change
of stimulus frequency. Using this feature, designers can see
changes in a device's response as it operates over a range of
frequencies, without the continuous time scale adjustments
that would be required with a conventional oscilloscope.

RF and microwave design engineers are familiar with the use
of synthesized signal generators for testing their devices.
However, for designers requiring a nonsinusoidal stimulus,
synthesized pulse generators are not generally available.
The repetition interval of most pulse generators is not con
stant enough for repetitive sampling with the microwave
transition analyzer. To ease this problem, the analyzer pro
vides a variable-rate, TTL-level output pulse that is frequency-
locked to the sample rate synthesizer. The pulse width and
period are adjustable in 100-ns increments. This output can
be used directly or as the trigger input to a standard pulse
generator, thereby locking the repetition rate to the time base
of the microwave transition analyzer. If the pulse is used for
modulating a carrier, the analyzer needs to know the carrier
frequency to sample the signal at the correct rate. (See the
earlier discussion on translation and compression.) For
stimulus-response testing under pulsed-RF conditions,
this is most easily accomplished by having a configured
synthesizer supply the carrier.

The automatic control of a sinusoidal signal generator by
the microwave transition analyzer results in an instrument
system with the flexibility to measure the response of a de
vice as a function of time, input frequency, or input power.
In addition to showing time-domain responses like an oscil
loscope at various input frequency and power levels, the
analyzer can automatically step the source across a frequency
or power range and provide measurement functionality simi
lar to that found in network analyzers. At each point in a
frequency or power sweep, the magnitudes and phases of
the sinusoids at the two input channels are measured by col
lecting a set of time samples and applying the FFT. Increasing
the number of time samples used in the FFT is equivalent to
decreasing the processing bandwidth and results in a more
accurate measurement (at the expense of sweep speed).
Because of the frequency discrimination provided by the FFT,
the measured frequency need not be the same as the stimu
lus. Conversion loss in devices responding at frequencies
that are offset from or harmonic multiples of the stimulus is
easily measured with the microwave transition analyzer.

Signal Test Applications
For signal test as opposed to component test applications,
the microwave transition analyzer is used as a stand-alone
instrument. Repetitive sampling still requires the signal to be
periodic, but radar and communication systems are increas
ingly moving to highly stable, synthesizer-based designs
locked to a common reference. Hewlett-Packard's frequency
agile signal simulator (FASS) is an example. Many times, the
testing of these systems can be accomplished with the system
in a periodic operating mode.

In applications where the signal frequency is unknown, the
microwave transition analyzer can be used like a counter to
determine the signal frequency to high precision. This is
accomplished by taking several measurements of the input
signal at different sampling rates and comparing the change

October 1992 Hewlett-Packard Journal 57 © Copr. 1949-1998 Hewlett-Packard Co.

Video Feedthrough Display

t

RF Pulse Display

Fi l ter Bank (FFTI

Sampled Carrier at a Fixed
Point in Pulse

Pulsed RF Input

Fig. operation. Processing flow in the stationary sampling mode of operation.

in the IF to the change in sampling rate.1 For CW signals
with at least a 10% duty cycle, the microwave transition ana
lyzer will determine the frequency to an accuracy of 1 part
in 108. If multiple signals are present at the input, the funda
mental frequency for each (up to a maximum of five) will be
returned. The analyzer is also able to measure the carrier
frequency of pulse modulated signals for pulse widths as
narrow as 300 ns. Because the data acquisition for this mea
surement is single-shot, the pulse repetition interval need
not be constant.

Stationary Sampling Mode
A measurement mode known as stationary sampling offers
significant enhancements to the microwave transition analyz
er's pulsed-RF capabilities. Stationary sampling is a technique
that substantially reduces the trace noise on time-domain
displays, resulting in increased sensitivity and dynamic
range. Furthermore, it is through stationary sampling that
pulsed network sweeps of frequency and power are
achieved. Fig. 15 illustrates the process.

A prerequisite for stationary sampling is that the carrier fre
quency is not a harmonic multiple of the modulation period.
That is, the modulation is not coherent with the carrier. Un
der this assumption, if the microwave transition analyzer
samples the signal at a rate equal to the modulation rate, the
sampling instant stays fixed with respect to the modulating

envelope, but not with respect to the carrier. This is illus
trated at the bottom of the figure. The sampling rate is set to
be either equal to or an exact submultiple of the pulse repe
tition frequency. The resulting set of samples describes the
carrier waveform at a particular point in the pulse. The data
is then passed through a narrowband filter implemented
with an FFT. This filtering acts to suppress noise and sepa
rate the carrier fundamental from dc and harmonic compo
nents. The complex-valued FFT output bin corresponding to
the frequency of the sampled carrier represents one (ana
lytic) time sample of the filtered waveform. This output
becomes one data point in the final trace.

The next trace point needs to be taken at a different position
with respect to the modulating envelope. To accomplish
this, is internal synthesizer controlling the sampling rate is
phase-shifted a precise amount. This moves the sampling
instant the desired time increment along the modulating
envelope. A new set of carrier samples is collected, pro
cessed with the FFT, and another complex valued output
point is stored to the final trace. The process is repeated for
every trace point. The amount of filtering that is applied in
creating the output trace is adjustable by the user and is
directly related to the number of time samples used in the
FFT.

58 October 1992 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

The sampling and filtering process separates the RF com
ponent from the dc component at each point in the pulse.
Depending on which FFT output bin is recorded, either the
dc feedthrough or the RF portion of the input waveform is
ultimately displayed (see Fig. 15). This eliminates the re
quirement for the user to supply external filtering when
performing these measurements. Also, measurements of
carrier distortion at a particular point in the pulse are pos
sible by setting the time span to zero. The FFT filtering in
Fig. 15 is omitted and the sampled carrier is directly dis
played. The measurement point is controlled by adjusting
the trigger delay. Transforming the carrier waveform into
the frequency domain allows easy measurement of the
distortion components.

For pulsed network analyzer sweeps, when the sweep axis
is frequency or power, the operation is very similar to that
described for time sweeps. A triggering process aligns the
measurement point with respect to the modulating enve
lope. Then, instead of phase shifting the sample rate synthe
sizer between each trace point, the carrier's frequency or
power is automatically stepped. The result is a measure of
the response of the device as a function of carrier frequency
or power at a particular point in the modulating envelope. In
conventional pulsed network analyzers, the IF bandwidth
sets limitations on edge speed and pulse width. In the micro
wave transition analyzer, the measurement is performed
using repetitive sampling techniques, and the modulation
bandwidth is limited only by the sampler's RF response.

User Interface Design
The user-interface design of an instrument as versatile as
the microwave transition analyzer required considerable
work. Its feature set includes functionality found in a variety
of microwave test equipment. The interface must not only
provide control for displays of voltage versus time like an
oscilloscope, magnitude versus time like a peak power meter,
and phase or frequency versus time like a modulation do
main analyzer, but must also allow for the automatic control
of an external synthesizer, providing CW and pulsed network
measurements of magnitude and phase versus frequency or
power. Additionally, the FFT can be used for harmonic anal
ysis, showing a display similar to that of a spectrum analyzer,
and the automatic signal acquisition routines can be used to
provide functionality found in CW and pulse counters and
vector voltmeters.

The challenge in any interface design is to balance the re
quirement of complete functional access with the need for
simple, intuitive controls for specific, targeted applications.
One approach suggested early in the development cycle was
to have the microwave transition analyzer assume different
instrument personalities. For example, the user would
choose an oscilloscope interface for one measurement, then
switch to a network analyzer interface for a second mea
surement, then to a spectrum analyzer for another, and so
on. The appeal of this approach is obvious: users need not
learn a new interface. But as the implementation developed,
the problems began to outweigh the benefits.

For example, an interface constructed according to this logic
would forbid the simultaneous display of a voltage-versus-
time waveform and its frequency spectrum, thereby losing a
valuable perspective in the analysis of nonlinear operation.
One of the major contributions of the microwave transition

analyzer is its multidomain capabilities, and the interface
needed to emphasize this strength. Less important, but still
significant, is the fact that marker operation is substantially
different for oscilloscopes, spectrum analyzers, and network
analyzers. Any implementation that might impose three dif
ferent marker systems on the user would be hard to describe
as user-friendly, yet a common marker system weakens the
implementation of instrument-specific personalities. Most
important, measurement features unique to the microwave
transition analyzer have no home in such an interface. Real
izing this, the designers set out to create a versatile core
interface targeted at two application areas: pulsed-RF or
switched-RF component test, and time-domain analysis of
microwave devices. Later, simplified interfaces for specific
applications could be developed by drawing features from
this core.

Pulsed-RF Testing. The versatility inherent in the architecture
of the microwave transition analyzer allows a good match to
the needs of high-speed pulsed-RF characterization. Design
ers in of area have traditionally required a wide variety of
test instrumentation. Measurements of magnitude settling
time are possible by combining an oscilloscope, a broad
band detector, and a filter to remove the video feedthrough.
Measuring phase settling time has been much more difficult,
usually requiring the use of modulation-domain analyzers,
pulse network analyzers, or custom down-converters, digi
tizers, and software. The fundamental attributes of the
microwave transition analyzer's architecture â€” a very wide-
bandwidth, dual-channel front end, a precisely uniform sam
pling interval, and powerful digital signal processing â€” pro
vide the elements for unprecedented measurement flexibility
in pulsed-RF component test. This, combined with the ana
lyzer's singular ability to measure magnitude and phase set
tling times on edges as fast as 25 ps, is the reason for tailoring
the interface to pulsed-RF testing.

Making it easy to demodulate a voltage-versus-time display
of an RF pulse and show magnitude, log magnitude, or
phase versus time was a key goal of the implementation.
These sophisticated digital demodulation procedures are
accessible simply by choosing a display format for the trace.
The phase slope can be removed mathematically at the
press of a button, or the phase can be measured with re
spect to the other channel by defining the trace input as a
ratio of the channels. On pulse waveforms with excessive
amounts of video feedthrough, the stationary sampling
mode can be used to separate the RF and video portions of
the waveform with digital filtering and display each portion
independently. Invoking the mode is accomplished by sim
ply turning on a filter. A variety of additional processing is
available by defining a trace in terms of digital signal pro
cessing operations on channels, memories, and other traces
(see Fig. 16). The result is a powerful digital signal process
ing system that is available to the user in a form that is easy
to understand and simple to use.

Recognizing the limited availability of synthesized pulse
generators, the design team decided to include one in the
analyzer. Using this output to control the modulation period
and a configured synthesizer to supply the carrier means
that all stimulus adjustments are controlled through the inter
face of the microwave transition analyzer. Since the analyz
er needs to know these signal parameters to set the correct
sampling rate, a configured setup eliminates the (sometimes

October 1992 Hewlett-Packard Journal 59
© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 16. The microwave transition analyzer includes a powerful
trace processing system. The definition shown here for the display
trace can be used to measure deviation from linear frequency
chirp.

. -

nonobvious) requirement of keeping the microwave transi
tion analyzer abreast of frequency changes made on the sig
nal generators. Furthermore, because the analyzer has com
plete control of the stimulus, network measurements as a
function of carrier frequency or power are also possible.
This added flexibility offers the user a multidimensional
perspective on the device's operation, along measurement
axes of time, carrier frequency, or carrier power (see Fig. 17).
One variable is swept while the other two are held fixed.

An Oscilloscope for the Microwave Engineer. The tools of
the trade in microwave component design are primarily
frequency-domain instruments such as spectrum and net
work analyzers. Time-domain analysis is not nearly as preva
lent at these frequencies as it is at the lower frequencies.

Carrier
Magni tude

Carrier
Frequency

Fig. in A multidimensional perspective is sometimes useful in
pulsed-RF device characterization. The microwave transition ana
lyzer carrier the response of a device as a function of time, carrier
frequency, or carrier power. One variable is swept while the other
two are held fixed.

The designers felt that by eliminating some of the road
blocks in triggering and sensitivity, the microwave transition
analyzer had the potential to bring a time-domain perspec
tive back to microwave design. The user interface was de
signed accordingly, with the microwave engineer in mind.

One of the simplest and most obvious changes to a standard
oscilloscope interface is that display ranges, trigger levels,
and marker readouts are entered and annotated in dBm as
well as volts. Also, unlike many oscilloscopes, the channel
hardware is continuously autoranged and unaffected by the
display scaling, which is just a mathematical operation on
the acquired data. If desired, this autoranging feature can be
disabled. Sensitive internal triggering over the bandwidth of
the instrument, combined with new features such as holding
a constant number of cycles on the display, filtering away
noise instead of averaging, and reliably triggering on even
very noisy signals with the phase trigger, all work to simplify
the measurement process.

IBASIC Implementation
Despite considerable attention paid to the interface design,
some users may still find the controls somewhat intimidat
ing, especially those who work in applications outside the
targeted areas. The goals of measurement flexibility and ease
of use generally conflict at the design of the user interface.
To address this concern, the microwave transition analyzer
allows the user to generate custom, application-specific in
terfaces through the internal execution of HP Instrument
BASIC programs. IBASIC eliminates the need for an external
controller by bringing the computer inside the analyzer. Pro
grams can be generated and edited by attaching a standard
HP-HIL keyboard to the front of the mainframe. Also incor
porated into the HP 70004A mainframe is a memory card
interface that can be used as a disk drive for the system.
External disk drives are also supported over the HP-IB inter
face. Specialized trace processing, custom interfaces, multi-
step procedures, programmable control of other instru
ments â€” in short, completely customized measurements â€”
are possible using the microwave transition analyzer running
an IBASIC program like the one shown in Fig. 18.

USER |

18 PiSSIGN PMta TO 811
28 RSSIGN PFass TO 819
38 ON KEY 1 LRBEt "RF on"

H8 ON KEY 2 LRBEL "RF off
58 ON KEY 4 LflBEL "RERD
68 ON KEY 6 LRBEL "CHIRP
78 ON KEY 7 LflBEL "PHflSE

GOSUB Rf on
GOSUB Rf off

FRSS" GOSUB Rd.fass

deviatn" GOSUB Fni_dev
deviatn" GOSUB PÂ« dev

38 IdleiURIT .85

I GOTO Idle

118 !
158 Rf_on: !

138 OUTPUT ?Mta;"sour:pox:stat on"
1HB RETURN

158 Rf off:!

168 OUTPUT eMta;"sour:pOH:stat off"
17B RETURN
180 FÂ«_dev: !

RF on

RF off

REflD

FflSS

CHIRP

deviatn

PHflSE

deviatn

Fig. 18. IBASIC programs allow generation of custom user
interfaces.

60 October 1992 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Frequency Translation as Convolution

An Â¡deal mixer multiplies the two signals at its RF and LO ports to produce the
signal at the IF port, as shown in Fig. 1 .

The frequency-domain representation of the RF and LO signals is shown in Fig. 2.

The convolution of the two frequency functions h(f] and k(f) is the value of the
integral:

g|f) = NX) k(f - x) dx.

The function k(x) is first frequency-reversed, that is, folded about the dc axis giving
k(-x). to at each evaluation frequency f, k(-x) is shifted by f with respect to
h(x). output area under the product of the two functions is the convolution output at
this frequency. Fig. 3 diagrams the procedure for the output frequency f = fy ~ '1 â€¢
The product is a single delta function, the area of which is ai32/4. This is the
convolution result at the frequency f = \i - f .

It is values to verify that the output will be nonzero only at four values of f: fÂ¡ + \i, i-\
-\i, -fi \\i, and -f] -\2- At each of these frequencies, the output is 3] 32/4. This
result is shown in Fig. 4. This frequency-domain representation is equivalent to
the sum The two cosine waves, one at frequency \i - \\ and the other at \i + fÂ¡ . The
amplitudes are 3)32/2. Using trigonometric identities, it's easy to verify that this
result is equivalent to aia2cos(f]t)cos(f2t).

a,cos (f , t) 3) 3 2 0 0 8 (f i t) C O S (f 2 t)

a 2 c o s (f 2 t |

F i g . 1 . I d e a l m i x e r o p e r a t i o n .

a j / 2

0 f .
Frequency!

a2/2

h(x)

a , / 2

(b)

g(f)

3) 3 2 / 4

o f 2 - f .
(c)

F i g . 3 . C o n v o l u t i o n r e s u l t f o r f = f 2 - f

Mixer
Output

a,a2/4 â€”

f - x

- f 2 - f , - f 2 + f , 0 f 2 - f ,
Frequency f

F i g . 2 . o u t p u t r e p r e s e n t a t i o n o f t h e R F a n d L O s i g n a l s . F i g . 4 . M i x e r o u t p u t s p e c t r u m .

October 1992 Hewlett-Packard Journal 61
© Copr. 1949-1998 Hewlett-Packard Co.

Summary
In addition to bringing the time domain to microwave de
sign, the microwave transition analyzer measures harmonic
distortion using the FFT and provides familar vector network
analyzer capability when configured with a synthesized signal
generator. In this respect, the microwave transition analyzer
is a general-purpose, multidomain tool that can be used to
link new time-domain measurements with traditional fre
quency-domain techniques, particularly in the areas of
pulsed-RF and nonlinear device characterization. In a single
instrument, the microwave transition analyzer integrates a
versatile hardware architecture with very flexible means of
control. The combination results in an instrument with
unprecedented measurement diversity.

Acknowledgments
Special thanks go to the project managers: Mike Marzalek
for initiating the project and Jim Coffron for carrying the
project through to production. Steve Peterson wrote the bulk
of the instrument firmware. John Wilson provided valuable
market research and user interface ideas. George Reynard,
the production engineer, did a wonderful job making life
difficult for the project team, and Dave Sharrit helped steer
our way through some very thorny technical issues.

Reference
1. A. Harmonic and V.A. Barber, "Microprocessor-Controlled Harmonic
Heterodyne Microwave Counter also Measures Amplitudes,"
Hewlett-Packard Journal, Vol. 29, no. 9, May 1978, pp. 2-16.

62 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Design Considerations in the
Microwave Transition Analyzer
Digital signal processing is used extensively to improve the performance
of the microwave sampler, the sample-rate synthesizer, and the
high-speed analog-to-digital converter, and to extract and display input
signal characteristics in both the time domain and the frequency domain.

by Michael Dethlefsen and John A. Wendler

The HP 71500A microwave transition analyzer is an MMS
(Modular Measurement System) instrument. As shown in
the idealized block diagram, Fig. 1, it consists of the
HP 70820A microwave transition analyzer module and the
HP 70004A MMS mainframe and color display. For an
explanation of the capabilities and applications of the
microwave transition analyzer, see the article on page 48.

The block diagram is relatively straightforward. The two
input signals are sampled by microwave sample-and-hold
circuits with an input bandwidth of 40 GHz. The sample rate
is generated by a low-frequency lO-to-20-MHz synthesizer
under processor control. The sampled signals are digitized
by an analog-to-digital converter (ADC), the digitized outputs
are processed by the digital signal processor, and the final
results are displayed on the MMS display by the instrument
processor.

The implementation was somewhat more complex than it
might appear from the block diagram. While microwave
samplers with bandwidths up to 40 GHz were generally
available, they were not designed to be used as sample-and-
hold circuits operating at rates up to 20 MHz. Low-frequency
synthesizers, while also commonly available, did not have

the desired phase noise performance. The available high
speed ADCs, if used directly on the sampler output, would
have been the primary noise floor and dynamic range limita
tion of the instrument because of their limited resolution.
Digital signal processing is relied upon heavily to achieve
and improve much of the basic hardware performance and
to extract and display the input signals' characteristics in
both the time and frequency domains. However, the general-
purpose digital signal processors could not do a significant
amount of real-time processing at the 20-MHz data rates, so
a large buffer memory was required between the ADC and
the digital signal processor.

This article attempts to explain some of the design consider
ations, in both the hardware and the firmware, that went
into the development of the microwave transition analyzer
block diagram.

Sampler Operation
Microwave samplers have been used in RF and microwave
instrumentation for several decades. 1 They traditionally
have been the most economical way to obtain the broadest
frequency coverage with the smoothest frequency response.

CHI

Inputs
DC to 40

G H z S a m p l e - a n d -
Ho ld C i rcu i t s

CH2

10-MHz
Re fe rence

â € ” 0 ^ * 0 HP 70004A MMS
Display and Mainframe

1 0 M H /

HP 70820A Microwave Transi t ion Analyzer Module

Fig. 1. Idealized block diagram of the
HI' 71500A microwave transition
analyzer.

()dol)cr 1992 Hewlett-Packard Journal 63
© Copr. 1949-1998 Hewlett-Packard Co.

Sampler Chip

RFIn

50 n

10 to 20 MHz from
Frequency Synthesizer

V
To Second Channel

Fig. 2. Simplified diagram of the
microwave sampler circuit.

Their noise figure is relatively poor. Their inherent broad
band coverage has encouraged their use in frequency acquisi
tion and phase-lock loops as well. However, their ability to
capture the time-domain waveform (or the frequency-domain
equivalent â€” simultaneously translating all the harmonics of
a repetitive waveform) is what made them so suitable for
the 70820A.

The basic concept of a microwave sampler is to generate a
very narrow sampling pulse that turns on a series switch
between the RF input signal and the IF circuitry, which is
mainly a holding capacitor. The amount of time that the
switch is on establishes the frequency response of the sam
pler. If the switch is fully on for 10 ps, the ideal frequency
response would be sinc(10~uf), which has a 3-dB bandwidth
of 44 GHz. Although this assumption of a perfectly rectangu
lar switch on-resistance as a function of time is only an ideal,
it is a good enough engineering approximation to use here.
As shown in Fig. 2, the series switch used in this sampler is
an integrated pair of GaAs diodes. The switching waveform
is generated by driving a silicon step recovery diode at a
variable sample rate between 10 and 20 MHz. The step out
put of the step recovery diode is split into two signals, one
for each channel. The sampler assembly then shapes and
differentiates this edge to form a narrow impulse, which
briefly turns on the diode switch, allowing some of the RF
current to flow into the holding capacitor.

For ideal sample-and-hold circuit operation, the output volt
age should only depend on the input voltage during a single
sampling instant. Its voltage should not depend on any pre
vious samples or how often the samples are taken. There are
two general techniques to achieve this sample-to-sample
independence. One is to discharge the holding capacitor
fully before each sample and measure the amount of charge
or voltage on the hold capacitor after each sample. The
other technique is to require that the sample-and-hold circuit

capacitor charge to 100 percent of the input voltage during
each sample period. The limitations of using the microwave
sampler as a high-speed, conventional sample-and-hold cir
cuit now begin to become apparent. At the fast 20-MHz sam
ple rates required, it is not possible to discharge the hold
capacitor accurately before each sample. On the other hand,
to attain the required microwave input bandwidth, the sam
pling pulse must be so narrow that it is not possible to
charge the hold capacitor fully.

A simplified model of a sample-and-hold circuit and the
equations describing its frequency-domain transfer function
are shown in Fig. 3. The fraction of the input signal that is
stored on the hold capacitor is referred to as the sampler
efficiency e, and for this model it can be computed as:

e=l- e~ton/RC.

vin(s) Vou,(s,S)

= jra
Original Frequency (o>=2jif)

Down-Converted Frequency
(<os=2jifs=2n/tsl

GIF(S.S)

G(s,S| =

GRF(S)

(1 - (1 - e) e - s t < > Â ») V o u , (s , S) = (1 - B e - s ' s)

V i n (s) t s (S + Â ¡ r U (1 - B (1 - e) e - s M d + s R C)
K pi.

B = e " t s / R P c f = 1 - e t o n / R (Â ·

H o l d E f f i c i e n c y S a m p l e r E f f i c i e n c y

Fig. 3. Sampler model.

64 October 1992 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

â€¢
Ideal

e=i
B=0.7

Fig. of Sampler time-domain response for different values of
sampler efficiency e and hold efficiency B.

100% efficiency, e = 1, would require that the sampler on-
time be several RC time constants long, but this would mean
an excessively small input bandwidth, as shown by the GRF
portion of the sample-and-hold circuit frequency response
equation in Fig. 3. Most microwave samplers have relatively
low voltage transfer efficiencies, usually significantly less
than 10%. With this low sampling efficiency, the resultant
voltage on the hold capacitor is a weighted combination of
the input voltage from many samples. Sample-to-sample
independence is not achieved.

An ideal sample-and-hold circuit also holds its sampled volt
age indefinitely until either a reset or the next sample occurs.
The voltage droop from one sample to the next is character
ized by the hold efficiency B, which can be computed as:

where ts is the sampling period and Rp is the sample-and-
hold circuit's load resistance as defined in Fig. 3. 100% hold
efficiency means no droop and an infinite load impedance.
Fig. 4 shows the time-domain results of sampling a pulse
waveform with a sample-and-hold circuit that has ideal char
acteristics, with reduced sampler efficiency, and with re
duced hold efficiency. Fig. 5 plots the GIF portion of the
sample-and-hold circuit's frequency response equation for
sampler efficiencies of 100%, 10%, and 1%, and for hold effi
ciencies of 90% and 100%. For low sampler efficiencies like
those normally encountered in microwave samplers, the
plots in Fig. 5 look very much like a single-pole, low-pass
filter. The equations for GIF do indeed simplify and con
verge, in this case, to a single-pole filter. The efficiency
equations become:

e = ton/RC

B = 1 - ts/R,,C.

The original model then becomes the very commonly used
model shown in Fig. 6. The sampler is simply replaced by its
time averaged impedance Rt.s/ton.

This characterization of the sampler model points out the
main difficulties of using a microwave sampler as a sample-
and-hold circuit. The IF output voltage is low-pass filtered
and represents an average of many samples of the input
voltage. In addition, if the hold efficiency is not very close to
1, even the low-frequency gain will vary with the sampling

frequency and the sampler efficiency as shown in Fig. 5. To
solve this latter problem, the HP 70820A microwave transi
tion analyzer module uses a very high-impedance buffer on
the output of the sampler and provides a positive feedback
bootstrap voltage to remove the low-frequency loading
effects of the current biasing resistors as shown in Fig. 2.
Operating with this high load impedance has the additional
benefit of minimizing the sampler compression at high input
levels since very little signal current has to flow through the
sampler diodes. In addition, since the sampler diodes are
effectively current biased instead of voltage biased, their
sensitivity to temperature variations is considerably reduced.

The problems created by the sampler low-pass filter effect
are more difficult to solve. As the sampling frequency is var
ied, the current bias is changed by the processor to keep the
sampler on-time ton constant. This is required so that the RF
frequency response does not vary noticeably with sampling
frequency. However, since the sampler time constant is pro
portional to ton/ts, the IF bandwidth now varies with sam
pling frequency. To solve this problem a programmable zero
was added following the IF buffer amplifier (see Fig. 7).
During the IF calibration process, the sample-and-hold cir
cuit low-pass pole is measured as a function of the sampling
frequency. Whenever the sampling frequency is changed, the
programmable-zero amplifier is adjusted to cancel the effect
of the sampler pole.

Another challenge encountered when using a microwave
sampler as a sample-and-hold circuit is its feedthrough capac
itance. A capacitance as low as 50 femtofarads between the
RF input and IF output will cause significant errors in the
expected operation of the microwave sampler. Signals be
low 10 MHz will directly couple into the IF even when the
sampler is supposed to be off. To cancel this effect, the input
signal is tapped off before the sampler diodes, inverted, and
capacitively summed back into the IF signal.

The IF output of the sampler is ac coupled. When the instru
ment is dc coupled, the dc component is restored by picking
it off before the sampler diodes and summing it back in at
the IF buffer stage. The crossover frequency is about 3 Hz.

OdB

50dB

= 0 9

0.9

D1

urn

Fig. of Sampler IF frequency response for different values of
sampler efficiency e and hold efficiency B.

October 1992 Hewlett-Packard Journal 65
© Copr. 1949-1998 Hewlett-Packard Co.

RtsAon

Fig. 6. Simplified sampler model.

IF and ADC Operation
Now that the signal has been sampled and the sampler pole
effect has been canceled, the IF signal can be processed and
digitized. The IF processing block diagram is shown in Fig. 7.
The ADC used in the HP 70820A is a 10-bit device, operating
at the same frequency as the input sampler. This 10-bit reso
lution does not provide enough dynamic range for many of
the measurements performed by the microwave transition
analyzer. For example, network analysis measurements can
be performed over a greater-than-100-dB range and time-
domain waveforms of 1 mV full scale can be captured with
out requiring trace-to-trace averaging. To achieve this dy
namic range improvement, step gains are placed in the IF
signal path. Up to 60 dB of gain in 6-dB steps can be switched
in, either autoranged or manually controlled by the user.
This means that even low-level signals can use the full range
and accuracy of the ADC. To allow gain to be used even in
the presence of a large dc signal, a dc offset DAC is added
ahead of the step gains as shown in Fig. 7. This allows up to
Â±420 mV of offset to be applied to the IF signal before the
step gains. The dc offset capability does not affect the al
lowed input signal range. It must be kept less than 420 mV
peak to avoid sampler compression.

The total noise present in the IF may mask the input signal
and limit the amount of step gain that can be used without
overranging the ADC. This noise is there because the sam
pler translates the entire 40-GHz bandwidth into the IF fre
quency range. The programmable-zero amplifier also adds a
lot of high-frequency amplification to the sampler and the IF
buffer noise floor. All of this noise needs to be minimized. It
is also highly desirable to remove any harmonics of the sam
pling LO signal and signals centered around them. To solve
these problems, switchable low-pass IF filters are used.
These include a 10-MHz filter for sampling rates between 14

and 20 MHz and a 7-MHz filter for sampling rates less than
14 MHz. In addition, a 100-kHz analog noise filter can be
switched in to provide a greater-than-20-dB reduction in
total it Since this noise filtering is done in real time, it
provides faster signal-to-noise ratio improvement than the
digital signal processor-based alternatives.

As described in the article on page 48, the IF signal is a time-
scaled version of the original RF signal when the instrument
is operating in the standard, repetitive sampling mode.
Therefore, triggering information can be obtained from the
IF signal. Since the signal is at a much lower frequency and
is potentially amplified and filtered, the trigger circuitry is
cheaper to implement and more accurate than a trigger cir
cuit operating directly on the microwave signals. This allows
the microwave transition analyzer to trigger internally on
very low-level periodic signals anywhere in its microwave
frequency range.

Once it IF signal has been filtered, offset, and amplified, it
is ready to be digitized. The ADC is a commercially avail
able, two-pass, 10-bit ADC and the required external sample-
and-hold circuit is implemented with a discrete design. The
sample-and-hold circuit and ADC are driven at the same
frequency as the microwave input sampler. The digitized
signal is stored into the 256K-sample ADC memory buffer
for further digital signal processing.

IF Corrections
Fig. 8 shows a representation of the spectrum of the analog
IF signal for a sample rate of fs = l/ts. The ideal sampling
operation creates a spectrum that is replicated every fs so
the spectral component at Ã2 = fs - fi is the complex conju
gate of the ideal spectral component at fj. The IF proces
sing, including the hold operation of the microwave input
sampler and the low-pass filters, provides a different
amount of attenuation and phase shift at the IF frequency Ã2
than at frequency fj. This is signified by the G(f) transfer
function in Fig. 8. When the ADC sample-and-hold circuit
resamples the IF signal, the spectral component at f-2 will be
aliased or folded onto the same frequency as fi. It is not pos
sible to build a perfect anti-aliasing filter that will totally
eliminate f-z, even at a fixed sample frequency of 20 MHz,
and in this application, where the sample rate is continuously
variable between 10 and 20 MHz, there will be significant

Programmable-
Zero

Ampli f ier
IF from

Sampler

Digital
Signal

Processor

Fig. 7. Microwave transition analyzer IF block diagram.

66 October 1992 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Sampled
Spectrum

and
IF Shape

Glf)

tj

Because of Front-End Sampling Operation,

Because of IF Shape and LO Delays,

Because of Folding in ADC Sample-and-Hold Circuit ,

VADCÂ«I > = Vi (f !) [G(t1)-fGÂ·(f!i-t1)]

Folded IF Response

Fig. 8. Spectrum folding in the microwave transition analyzer.

aliasing. However, since the filtered IF signal was originally
a sampled signal, the relationship between the original
aliased spectrum and the unaliased spectrum is known:

V2 = Y!*.

Therefore, the original spectrum can be computed if the
folded IF response (G(fj) + G*(fs - fi)) can be determined.
The folded frequency response varies with fs, and fs can be
any value between 10 and 20 MHz. Therefore, the IF cannot
realistically be calibrated just by measuring the folded IF
response, since there are an almost unlimited number of
different responses possible. Instead, the unfolded frequen
cy response G(f) must be determined and then the folded
response can be computed based on the present value of fs.
Determining the folded IF response is the major requirement
for the digital signal processor-based IF corrections in the
microwave transition analyzer.

Many things contribute to the overall IF frequency response.
In addition to the flatness of the IF buffer amplifier, the
programmable-zero amplifier, and any nonideal cancellation
of the sampler pole, all possible combinations of analog fil
ters and step gains must be characterized. For example, the
relatively high-order filters may have an amplitude response
flatness of Â±2 dB and some very significant group delay vari
ation which creates considerable ringing in their step re
sponse. To measure these, the microwave transition analyz
er generates a calibration signal. The calibration signal is a
precisely known square wave that is connected by the user
to the input port. The frequency and amplitude of the cal
ibration signal are adjusted and varied as required during
the IF calibration process. This calibration signal is only
used for IF calibration and verification. The rise and fall
time requirements on the calibration signal are governed by
the requirement that it settle in less than 50 ns, so it is not
useful for verifying or calibrating the RF frequency response
of the input.

The IF frequency response must be measured in an alias-
free fashion and at frequencies higher than 10 MHz. This
cannot be done with just a 20-MHz maximum sample rate.
The exclusive-OR control shown in Fig. 7, which inverts and

delays the ADC clock, helps solve this problem. By first
measuring the calibration signal with a normal 20-MHz clock,
and then remeasuring the same signal with the inverted
clock, which delays the ADC sample by 25 ns. an effective
40-MHz sample rate is achieved after the two measurements
are interleaved. In this way. the frequency responses, both
magnitude and phase, of the IF path, the step gains, and the
switched filters are all determined. In some cases the mea
sured data is used directly in the correction process. In other
cases, such as for the step gams, better results are achieved
by fitting the measured data to a model and then computing
the extrapolated frequency response from the model.

The other critical parameter that must be included in the IF
frequency response is the delay between the microwave
input sampler and the ADC sample-and-hold circuit. This
must include both the IF signal delay and the delay in the LO
clock paths. Since this delay is not constant with sample
frequency, it must be characterized as a function of the sam
ple frequency. A significant portion of the IF calibration time
is spent doing this characterization. This involves measuring
the group delay of the harmonics of the calibration signal at
different sample frequencies.

Once the unfolded frequency response and the delay have
been measured, the folded frequency response can be com
puted for a given sample frequency. However, since the VÂ¡
and V-2 spectral components can have very similar ampli
tudes, it may turn out that the folded frequency response has
a very deep null in it, depending on the phase relationships.
An excessively deep null cannot be properly corrected, for
both noise and stability reasons. When this occurs, the firm
ware in the microwave transition analyzer must change the
delay relationship between the IF signal and the ADC clock.
This can be done with either the ADC clock invert/delay
control or by using a different 20-MHz analog filter in the
signal path. The firmware determines which of the possible
combinations results in the best possible folded frequency
response.

Once the IF calibration process has been completed, the
data is stored in battery backed-up RAM. Whenever the sam
ple frequency or IF gain is changed, the microwave transi
tion analyzer firmware recomputes the folded frequency
response of the IF. This folded response is then inverted and
applied to the digitized input data using either an FFT (fast
Fourier transform) operation or a 64-point FIR (finite impulse
response) digital filtering operation, depending on the mea
surement mode. The result is that the IF looks as if it has a
flat response all the way to the Nyquist frequency (fs/2).
Therefore, the microwave sampler appears to have the ideal
impulse and step response expected of a true sample-and-
hold circuit.

Sample Rate Synthesizer
The requirements on the sample-rate synthesizer in the
microwave transition analyzer are quite stringent. Not only
must it have a frequency resolution less than 0.001 Hz over a
lO-to-20-MHz frequency range, but it must also be able to
phase-lock to a common 10-MHz reference and be capable
of shifting the phase of the synthesized output with less than
0.001-degree resolution. Fortunately, this type of source,
using fractional-N synthesis techniques,2 had been used in
earlier HP instruments and could be efficiently leveraged.

October 1992 Hewlett-Packard Journal 67 © Copr. 1949-1998 Hewlett-Packard Co.

4 2 0 t o 4 4 0 M H z

W

Phase/
Frequency

Detector

50-MHz
Low-Pass

Filter

20 -MHz
Bandpass

Filter 10 to 20 MHz
Output

10 -MHz
Reference

Fract ional -N Assembly

The most stringent requirement for the source was its jitter,
or equivalent phase noise, but the available implementations
had inadequate performance. Both the close-in and the
broadband phase noise of the synthesizer are important. For
example, just based on the maximum slope of a full-scale
40-GHz sine wave, jitter of 7 femtoseconds on the sampler
LO signal generates additional noise greater than one least-
significant bit of the ADC. Since the fundamental of the RF
waveforms can be mixed to as low as 100 Hz in the IF, mini
mizing the close-in noise and spurious components of the
sample-rate synthesizer is critical to avoiding low-frequency
perturbations and distortion of the digitized signal.

To improve the basic performance of the available
fractional-N synthesizers while still leveraging much of the
previous engineering effort and available integrated circuits,
a translate loop was added to the normal synthesizer block
diagram. As seen in Fig. 9, instead of having the loop oscilla
tor operate directly over the normal 30-to-50-MHz band, a
420-to-440-MHz oscillator is mixed with a 390-MHz reference
oscillator. The mixer output, 30 to 50 MHz, is the input to the
leveraged fractional-N assembly, which does the fractional
division, phase detection, and interpolated phase correction,
and generates the tuning voltage to lock the 440-MHz oscilla
tor. A second output of the 440-MHz oscillator is fed to a
programmable integer divider to generate the lO-to-20-MHz
output.

There was no requirement for this synthesizer to sweep con
tinuously over the 10-to-20-MHz range. This translate-and-
divide-down block diagram allows the performance of the
overall synthesizer to be improved from the original design
by a factor equal to the integer divide number, or more than
26 dB. To improve the broadband phase noise further, a
200-kHz-wide bandpass filter is switched in just before the
step recovery diode driver whenever the synthesizer is with
in the 19.8-t o-20-MHz frequency range. In the majority of the
measurement modes, the synthesizer is set very close to 20
MHz, so this bandpass filter is normally used. While it was
not possible to achieve the 7-fs performance number, this

Fig. 9. Block diagram of the
10-to-20-MHz sample rate synthe
sizer. API stands for analog phase
interpolation.

combination of improvements reduces the jitter contribution
of the synthesizer to less than 1 ps.

RF Filtering
Because the microwave transition analyzer digitizes wave
forms with a continuous and extremely precise time axis, it
becomes feasible to apply digital filtering functions to these
waveforms. These filters can be used to simulate the adding
of a hardware filter to the system, to improve the signal-to-
noise performance, to remove undesired harmonics and
spurious frequency components, and to compensate for non-
ideal microwave frequency response effects in the RF cir
cuitry, cabling, probes, and test fixtures, which inevitably
degrade the system bandwidth. This ability to correct for RF
frequency response roll-off is also used within the instru
ment to flatten the frequency response of both the samplers
and the internal RF cabling to 40 GHz.

Two filters can be defined by the user, one for each of the
two input channels. These filters are specified by defining
the magnitude and phase response at up to 128 arbitrarily
spaced frequency points. The type of interpolation to be
used between these frequencies can be specified as flat,
linear, or logarithmic. These user-defined filters are com
bined with the instrument's own RF correction data to gen
erate the composite filter function that is applied to the digi
tized signal. Regardless of whether the sampler is being
used for frequency translation or frequency compression or
a combination of the two, there is a unique mapping be
tween the input RF frequency and the IF frequency. This
means that the desired RF filtering can indeed be performed
by scaling and translating the filters' frequency axis, based
on the current time span and carrier frequency, into the IF
band and performing the filtering on the digitized IF signal.

There are some modes of sampler operation in which the RF
waveform is not replicated in the IF, so there is no unique
RF-to-IF frequency mapping and RF filtering cannot be per
formed. An example of this mode of operation would be
when triggering on the clock frequency while sampling a

68 October 1992 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Trl=Correct

30 mU/div

0 U ref

TrE=Idea1

30 mU/div

0 U ref

Tr3=Raw
15 n>V/d i
0 U ref

250 ps/div

Tr4=Ucorrl

10 dB/div

0 dB ref

Fig. 10. Aii example of a measurement with user filter corrections.
The frequency response of a cable fixture was measured (bottom
trace), stored, and used to correct a measurement of an 800-ps
pulse that was made using the fixture. The corrected trace mea
sured with the fixture is almost identical to the ideal trace mea
sured without the fixture. Because the ideal and corrected traces
are almost identical, they are indistinguishable in this figure.

random data sequence to create an eye diagram. User filter
ing, including the internal RF corrections to 40 GHz, is not
valid in this mode so the feature must be turned off. If, how
ever, the data sequence is actually a pseudorandom data
sequence and the sample rate of the microwave transition
analyzer is adjusted to correspond to the pattern repetition
rate instead of the clock rate, then the RF waveform is repli
cated in the IF, and RF filtering and corrections can be per
formed, even while triggering on the clock to make eye
diagram measurements.

The user filter and correction data can be generated in sev
eral ways. Direct entry of values is one alternative that is
useful for simple, rectangular filters. The frequency-domain
data for the RF filter can also be generated from any of the
four traces. This means that mathematical filters can be de
fined using the built-in trace math and stored to the RF filter.
More important, it means that measurements can be used to
create the RF filter or correction data. For example, the
microwave transition analyzer, in conjunction with an ap
propriate source, can be used to measure a transfer function
of a microwave test fixture. This transfer function can be
stored to the user correction table, and the inverse of this
transfer function can then be used as the RF filter to be ap
plied to the time-domain data. This filtering (deconvolution)
removes the frequency response effect of the test fixture
from the time-domain waveform of interest. The transfer
function measurement can be done in frequency sweep
mode with a CW source stepped over the frequency range of
interest like a conventional network analyzer, or the transfer
function can be measured with a wide-bandwidth step or
impulse source.

An example of applying the user correction filter is shown in
Fig. a First the frequency response transfer function of a
cable fixture was determined by measuring a 400-ps pulse
both before and after it went through the cable fixture. The
FFT of these two pulse trains was computed to determine
their frequency spectrums. The ratio of these two spectrums

was taken and stored to the user correction filter as the
cable fixture's frequency response. This is shown on the
bottom trace in Fig. 10 out to a frequency of 8 GHz. A test
pulse of of 800 ps was then used. The upper raw trace shows
the pulse distortion caused by the cable fixture. After user
corrections were turned on. the corrected trace was gener
ated, which lies almost directly on the ideal trace. The ideal
trace was established by measuring the pulse directly out of
the pulse generator before it was connected to the cable
fixture. The time-domain traces are showing a half cycle of a
200-MHz pulse tram.

There are some limitations on the ability of the microwave
transition analyzer to apply RF filtering and correction to
time-domain waveforms. First, the IF waveform must be a
valid representation of the RF waveform. If there are non-
harmonically related, spurious, or random signals present,
they will be mixed into the IF but will not appear at the cor
rect frequencies, so incorrect filter values will be applied to
them. Second, the signal must be sampled with fine enough
equivalent time resolution to avoid aliasing any significant
harmonics or sidebands. This is just the Nyquist criterion,
which says that a signal must be sampled at a rate greater
than twice its single-sided bandwidth. This applies to both
real-time, single-shot sampling and repetitive, equivalent
time sampling. Any aliased components will appear at the
incorrect frequencies and be improperly filtered.

Third, because limited time records are captured and pro
cessed with the FFT, totally arbitrary filter shapes cannot, in
general, be precisely accommodated. For example, a filter
shape with a 2-^is transient response would require that 2 [is
of an arbitrary input be digitized to generate even the first
output point. A desired time resolution of 1 ps would require
two million data samples and a digital filter with effectively
two million coefficient taps. There are two methods avail
able to minimize this limitation. If an integer number of
cycles of the input are used in the FFT processing, then arbi
trary filter shapes can be precisely handled. The circular
convolution performed by the FFT is, in this case, exactly
equivalent to the desired linear convolution. To make this
more practical to the user, a cycles mode is available in
which the time span can be set in terms of cycles of the fun
damental instead of seconds per division. This automatically
tracks the fundamental frequency as it is changed. The micro
wave transition analyzer oversweeps the time-domain span
up to the next largest power-of-two trace size. For example,
if a 0.5-cycle time span is specified with a trace point size of
512, then one full cycle of the waveform is digitized and a
1024-point FFT is used.

The second method of minimizing the effect of limited time
records is to make sure that the filter's transient response is
shorter than the minimum displayed time span to be used. If
the waveform used in the FFT does not contain an integer
number of signal periods, there will potentially be edge ef
fects because of the combination of the discontinuity at the
edges of the time record and the filter's transient response.
Since the instrument oversweeps up to a factor of two, the
edge effects will not be part of the displayed waveform as
long as the filter has a transient response shorter than the
displayed time span.

O c t o b e r 1 9 9 2 H e w l e t t - P a c k a r d J o 69
© Copr. 1949-1998 Hewlett-Packard Co.

A fourth limitation on the ability of the microwave transition
analyzer to apply RF filtering and correction is that decon-
volution cannot be performed over a wide dynamic range.
For example, if the test fixture has an upper frequency roll-
off or a narrowband notch of 50 dB, correcting for this would
require that the microwave transition analyzer effectively
apply 50 dB of gain at these frequencies. This much gain on
the noise components creates an excessively noisy and un
stable waveform trace. In general, 20 to 30 dB is about the
largest amount of frequency dependent amplification that
can be used while maintaining an acceptable waveform with
a reasonable amount of averaging and reasonable stability in
the test fixture. When creating the transfer function to be
used in the deconvolution, the attenuation should be rolled
off once the transfer function has dropped below the accept
able limit. This also effectively low-pass filters the signal at
frequencies above which deconvolution can no longer be
done. This is seen in the last division of the user correction
trace shown in Fig. 10, where the frequency response is be
ing tapered from -35 dB to +20 dB at 10 GHz. Keeping the
value of -35 dB to the default 100-GHz maximum frequency
would have resulted in excessive noise because of the +35
dB of broadband gain that this would have created.

Analytic Signal
Many of the primary applications for the microwave transi
tion dis result from its built-in capability to easily dis
play the instantaneous magnitude and phase envelope of the
input signal. This capability is implemented by creating the
quadrature function using the Hubert transform. This quad
rature function is combined with the original data to form a
complex-valued representation of the waveform called the
analytic signal. Just as complex-valued phasor representa
tions simplify the analysis of linear circuits, the analytic sig
nal simplifies the manipulation and analysis of modulated
waveforms.

Assume a signal can be mathematically expressed as

x(t) = a(t)cos(coct

and a(t) and cj>(t) can be simply calculated from the
magnitude and phase of the analytic signal xa(t):

a(t) = l(t)-)

where coc is the carrier frequency and a(t) and <J)(t) are the
amplitude and phase modulation functions.

Now create the complex function,

xa(t) = x(t) - jxhi(t),

where xj,i(t) is the Hubert transform of x(t). The Hubert
transform is defined as a convolution of the the signal with
-1/itt. The frequency-domain relationship is simply:

Xhi(fj = jX(f)sign(f),

where sign(f) = -1 for f < 0, 0 for f = 0, and 1 for f > 0. Thus,

Xa(f) = X(f)(l + sign(f))
= 2X(f)forf > 0
= X(f)forf = 0
= Oforf < 0.

This is simply the positive spectrum of x(t).

If the modulation bandwidth is less than the carrier frequency
(i.e., the modulation spectrum doesn't wrap around dc), then

xa(t) = a(t)eu"*t+<K'Â»

and

<Kt) = - tan-'(xhi(t)/x(t)) - (wct).

Another way to view the Hubert transform is as a phase
shifter that shifts the phase of each input frequency compo
nent by 90 degrees, leaving the magnitude unaffected. The
resulting signal is said to be in phase quadrature with the
original. This is sometimes done with analog phase shifters
in radar and receiver systems. Very accurate, wideband re
sults become much easier to achieve, however, with digital
signal processing, using either the FFT as shown above, or
time-domain FIR filters.

The analytic signal representation is particularly useful in
the measurement of pulsed RF signals. In these applications
it is often the characteristics of the magnitude or phase as a
function of time that are of interest. These features of the
signal can be obtained by simply converting the analytic
representation to polar format and displaying the desired
quantity. Traces of phase as a function of time can be numer
ically differentiated to display frequency as a function of time.
A linear slope corresponding to the carrier frequency can be
mathematically removed leaving a display of the carrier's
phase modulation as a function of time. As described here,
these are single-channel measurements where the carrier
phase is measured relative to the fixed-frequency sampling
pulse. Measuring the phase with respect to a CW reference
is also possible, using both input channels.

Two-channel operation suggests another valuable use of the
analytic representation: vector normalization of traces.
Many times it is desired to measure the magnitude and
phase response of a particular device under a time-varying
stimulus, such as pulsed RF. In this case, a two-channel mea
surement is needed in which the time response at the output
of the device is divided (in vector fashion) by the response
at the input. Also, to support the measurements typically
found in conventional network analyzer systems, a complex
(vector) representation of trace data is mandatory.

Since the Hubert transform is a filtering process, it has the
same for and const ra in ts as previous ly d iscussed for
RF filtering. In addition, it has the constraint that the signal
must correspond to the basic model of a single carrier fre
quency with modulation sidebands. For example, baseband
signals with a fundamental and many harmonics do not
meet this criterion, and the analytic operator has little, if
any, useful meaning. The user can disable the analytic opera
tor in this mode to achieve some increased performance
speed. The Hubert transform performs best if the carrier is
located in the center of the IF bandwidth. This provides the
maximum amount of double-sided modulation bandwidth,
and keeps the carrier the maximum distance from dc or the
Nyquist frequency where inaccuracies in the Hubert trans
form are the greatest. The internal implementation of the
Hubert transform generally uses the positive-side FFT tech
nique, with some additional enhancements using windowing
and unwindowing operations to minimize the time record
edge discontinuities.

70 October 1992 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Sampling at Slower Rates
As mentioned earlier, the sampling rate synthesizer operates
between 10 and 20 MHz. Normally, the sampling rate must
be set very close to the input signal's fundamental frequency
or pulse repetition frequency or a subharmonic thereof. This
means that signal frequencies less than 10 MHz cannot be
acquired in the normal manner. If the hardware sampling
rate is set to a multiple of the desired rate, then simply keep
ing one out of every N points would result in the desired
sampling rate. Unfortunately, complications arise for trigger
ing and providing IF correction. Because more than one
sample is taken during each period of the input signal, the IF
signal presented to the ADC is not an accurate replica of the
input signal, with or without IF correction. For this reason,
triggering on the IF signal is no longer adequate for proper
operation. What is required is a digital triggering operation
using only the samples corresponding to the final (decimated)
sampling rate. To correct the IF response and ensure that
the retained sample is an accurate measure of the input sig
nal voltage, the influence of the samples leading up to the
desired one needs to be removed. This can only be achieved
by processing the original samples obtained at the hardware
sampling rate and correcting the desired sample before
discarding the remaining N-l samples.

Many samples may have to be processed before a software
trigger is detected. Consequently, the processing involved in
applying IF corrections to the retained samples needs to be
done in real time, that is, the correction process needs to
operate in parallel with the data collection at a rate that is
sustainable over an indefinite period. This is accomplished
by designing the ADC memory to be a dual-ported circular
buffer so that one segment of memory can be worked on
while another is being written to by the ADC. As samples
are collected at the lO-to-20-MHz rate in another part of
memory, a finite impulse response (FIR) IF correction filter
of up to 64 taps is applied to the block of samples just col
lected and a single corrected output sample is produced.
The digital signal processor is able to produce corrected
samples at a maximum rate of about 10 kHz. This then
becomes the maximum sampling rate in the new mode of
operation. The minimum sampling rate is 1 Hz.

Input signals with a fundamental repetition frequency less
than 10 kHz are sampled once per cycle. The sample rate

synthesizer is set somewhere between 10 and 20 MHz, N is
determined, and 1 of N hardware samples are corrected and
retained. The process is the same for input repetition fre
quencies between 10 kHz and 10 MHz except that multiple
input periods occur between each retained sample, keeping
the output rate less than 10 kHz.

Conclusion
By combining and enhancing the basic analog and digital
hardware blocks with the flexibility of digital signal process
ing, the HP 70820A microwave transition analyzer team was
able to implement a fundamentally simple microwave data
acquisition instrument that is capable of making a wide vari
ety of time-domain and frequency-domain measurements on
microwave signals and components. Not only does this pro
vide new versatility previously unavailable in a single instru
ment on both CW and complex time-varying signals, but it
also provides new functionality to the microwave designer â€”
for example, in looking at extremely fast transitions on
periodically pulsed signals.

Acknowledgments
The development of the HP 70820A microwave transition
analyzer module, given its new approach to making such a
wide variety of measurements, required the work, contribu
tions, and advice of a large number of people as its defini
tion and functionality evolved over time. Mike Marzalek and
Ron Hogan pioneered many of the initial hardware concepts.
Steve Peterson helped develop the digital signal processor
processing algorithms, user interface, and firmware func
tionality. Mechanical product design by Jim Tranchina and
major hardware design efforts by Matt Fowler, Dave Ballo,
and Jim Jensen brought the product to its final production
quality status.

References
1. W.M. Grove, "A dc-to-12.4-GHz Feedthrough Sampler for Oscillo
scopes 18, other RF Systems," Heu'lett-Packard Journal, Vol. 18,
no. 2, October 1966, pp. 12-15.
2. D.D. Danielson and S.E. Froseth, "A Synthesized Signal Source
with Journal, Generator Capabilities," Hewlett-Packard Journal,
Vol. 30, no. 1, January 1979, pp. 18-26.

October 1992 Hewlett-Packard Journal 71
© Copr. 1949-1998 Hewlett-Packard Co.

A Visual Engineering Environment for
Test Software Development
Software development for computer-automated testing is dramatically
eased by HP VEE, which allows a problem to be expressed on the
computer using the conceptual model most common to the technical user:
the block diagram.

by Douglas C. Beethe and William L. Hunt

For many years, the cost of developing computer-automated
testing software has grown while the cost of the computer
and instrumentation equipment required to run tests has
dropped significantly. Today, in many test systems, the hard
ware costs represent less than 25% of the total cost of the
system and software costs consume the other 75%. HP VEE
was designed to dramatically reduce test software develop
ment costs by allowing the test to be expressed on the com
puter using the conceptual model most common to the tech
nical user: the block diagram. This article will provide a
general overview of the development of HP VEE, its feature
set, and how it applies the concept of the executable block
diagram. Further details of the architecture of HP VEE can
be found in the articles on pages 78 and 84.

There was a time when business and finance people dreaded
using a computer because it meant an extended question-
and-answer session with a primitive mainframe application
being displayed on a dumb terminal. Even after the first per
sonal computers were introduced, very little changed, since
the existing applications were simply rewritten to run on
them. When the electronic spreadsheet was developed, busi
ness users could finally interact with the computer on their
own terms, expressing problems in the ledger language they
understood.

Un titled

The technical community was left out of this story, not be
cause the personal computer was incapable of meeting
many of their needs, but because their problems could sel
dom be expressed well in the rows and columns of a ledger.
Their only options, therefore, were to continue to work with
the question-and-answer style applications of the past, or to
write special-purpose programs in a traditional programming
language such as Pascal, C, or BASIC.

Technical people often find it difficult to discuss technical
issues without drawing block diagrams on white boards,
notebooks, lunch napkins, or anything else at hand. This
begins at the university where they are taught to model vari
ous phenomena by expressing the basic problem in the form
of a block diagram. These block diagrams usually consist of
objects or processes that interact with other objects or pro
cesses in a predictable manner. Sometimes the nature of the
interactions is well-known and many times these interactions
must be determined experimentally, but in nearly all cases
the common language of expression is the block diagram.

Unfortunately, the task of translating the block diagram on
the lunch napkin into some unintelligible computer language
is so difficult that most technical people simply cannot ex
tract real value from a computer. Staying up on the learning

H u n S t o p C e n t S t e p |

Fig. 1. A simple HI' \KE program
to draw a circle.

72 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

curve of their own problem domain is a sufficient challenge
that embracing a whole new learning curve (programming)
just to translate problems for the computer's benefit hardly
seems worth the effort. While it is true that many wonderful
solutions to certain kinds of problems have been generated
over the years, most of the potential usefulness of comput
ers has never been realized. In many cases, a good calcula
tor is still the best bet because it makes a manual solution
relatively easy to compute.

What is HP VEE?
HP VEE, Hewlett-Packard's visual engineering environment,
is a software tool that allows users to create solutions by
Unking visual objects (icons) into block diagrams, rather
than by using traditional textual programming statements.
HP VEE provides objects for data collection, analysis, and
presentation, in addition to objects and features for data
storage, flow, modularity, debugging, documenting, and
creating graphical user interfaces. The objects work to
gether in the form of an interconnected network or block
diagram constructed by the user to represent the problem at
hand. The user selects the necessary objects from the menu,
links them in the manner that represents how data flows
from one object to another, and then executes the resulting
block diagram. No translation to some other language. No
other intermediate step.

To understand HP VEE better, consider a simple graphical
program to draw a circle. By connecting a loop box, two

math boxes (sin and cos), and a graph, this simple program
can be built in less than one minute (Fig. 1). Although this is
not a difficult task using a traditional language that has sup
port for graphics, it is still likely that it will be quicker to
develop it using HP VEE.

HP \"EE eases the complexity of data typing by pro\iding
objects that can generate and interpret a variety of data
types in a number of shapes. For example, the virtual func
tion generator object generates a waveform data type, which
is just an array of real numbers plus the time-base informa
tion. It can be displayed on a graph simply by connecting its
output to the graph object. If its output is connected to a
special graph object called a MagSpec (magnitude spectrum)
graph, an automatic FFT (fast Fourier transform) is per
formed on the waveform (Fig. 2). By connecting a noise gen
erator through an add box, random noise can be injected into
this virtual signal (Fig. 3). If we had preferred to add a dc
offset to this virtual signal, we could have used a constant
box instead of the noise generator.

User panels allow HP VEE programs to be built with ad
vanced graphical user interfaces. They also allow the imple
mentation details to be hidden from the end user. To com
plete our waveform application, we can add the slider and
the graph to the user panel (Fig. 4). We can adjust the pre
sentation of this panel by stretching or moving the panel
elements as required for our application.

Unfilled : R u n Â ¡ S t o p . C o n t S t e p

F i l e E d i t F l o w D e v i c e D a t a M a t h

Fig. 2. A waveform displayed in
the time and frequency domains.

October 1992 Hewlett-Packard Journal 73

© Copr. 1949-1998 Hewlett-Packard Co.

Hun 1 S top : Con t

F l o w D e v i c e M a t h A d v M a t h D i s p l a y H e l p

Ã­ Frequency

Ã ̄Amplitude

| Phase I Deg

; Time Span

Fig. 3. Noise added to a wave
form in the time and frequency
domains.

This is just a trivial overview of the basic concept behind
HP VEE. Other major features not covered include objects
for sending data to and from files, data translation and con
version, advanced math capabilities, and data display func
tions. HP VEE actually consists of two products. HP VEE-
Engine is for the analysis and presentation of data gathered
from files or programs or generated mathematically. HP
VEE-Test is a superset of HP VEE-Engine and adds objects
and capabilities for device I/O and instrument control.

Development Philosophy
The team's goal for HP VEE was a new programming para
digm targeted not only at the casual user, but also at the
advanced user solving very complex problems. One simple
approach would have been to assign an icon to each state
ment in a traditional language and present it to the user in a
graphical environment. The user would simply create icons
(statements) and connect them in a structure similar to a
flowchart. However, such a system would be harder to use
than a traditional language, since the graphical program
would require more display space than the older textual
representation and would be more difficult to create,
maintain, and modify. This would actually have been a step
backward.

We decided that a genuine breakthrough in productivity
could only be achieved if we moved to a higher level of ab
straction to more closely model the user's problem. We
therefore chose to allow users to express their problems as

executable block diagrams in which each block contains the
functionality of many traditional program statements. Many
elements in HP VEE provide functionality that would require
entire routines or libraries if the equivalent functionality
were implemented using a traditional language. When users
can work with larger building blocks, they are freed from
worrying about small programming details.

Consider the task of writing data to a file. Most current pro
gramming languages require separate statements for opening
the file, writing the data, and closing the file. I(would have
been relatively easy to create a file open object, a file write
object, and a file close object in HP VEE. Such an approach
would have required at least three objects and (heir associ
ated connections for even the simplest operation. Instead,
we created a single object that handles the open and close
steps automatically, and also allows all of the intermediate
data operations to be handled in the same box. This single
To File box supports the block diagram metaphor because the
user's original block diagram would not include open and
close steps (unless this user is also a computer programmer),
it would only have a box labeled "Append this measurement
to the data file." The open and close steps are programming
details that are required by traditional programming languages
but are not part of the original problem.

Or, consider the task of evaluating mathematical expres
sions. In some common dataflow solutions, a simple opera
tion such as 2xA+3 would require four objects and their

74 October 1992 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

associated connections (two constants, one add operation,
and one multiply operation). Using HP VEE's formula box
requires only the single expression object to solve this prob
lem. The point of a block diagram is to show an overview of
how a complex system operates without regard to imple
mentation details. Had HP VEE been implemented without a
higher level of abstraction, the resulting graphical program
would have had so many boxes and lines that it would have
resembled a maze rather than a block diagram.

Development Process
We followed a fairly informal development lifecycle for HP
VEE. It was based on the spiral lifecycle,1 which divides the
development phase into a series of design/build/test cycles
with a risk assessment before each. This worked very well
for us for several reasons. Probably the most important fac
tor was that the team was small and highly motivated. This
made rigorous checkpoints and detailed design documents
unnecessary since all of the team members worked very
closely together toward the same goals. Another important
factor was the use of an object-oriented design approach
coupled with very careful design practices. This allowed us
to design classes according to their interactions with the
rest of the system without spending a great deal of time im
plementing the internals of the classes. This is important in
a spiral lifecycle because during each cycle, an entire class
or set of classes may need to be reimplemented. Without an
object-oriented approach, this would require an excessive
amount of time rewriting other seemingly unrelated parts of
the system. Another successful development decision was
the early incorporation of a full-time software testing team
to help us with the test phases of the lifecycle.

Fig. 4. User panel for waveform
plus noise application.

The Search for Primitives
The initial functionality was specified by the team based on
our experience as frustrated users of third-generation lan
guages (3GLs) such as Pascal, C, and BASIC. Certain tasks
appeared over and over on the "I wish there were some
other way to do this ..." list. Experience had already shown
that library of limited flexibility, the usual subroutine library
approach did not offer the type of productivity increase being
sought. However, with our executable block diagram meta
phor, we felt that many of these tasks could be implemented
as primitives in HP VEE while still providing the necessary
flexibility.

Foremost among these tasks were data management, engi
neering graphics, instrument control, and integration of mul
tiple applications. In each case we were convinced that a
higher level of abstraction could be developed that would be
flexible yet simple enough to require only minor configura
tion specification from the user in most situations.

Data Management
To tame the basic data management problem we developed
the container architecture. Containers hold data, either ar
rays or scalars, of a wide variety of data types, and provide a
rich set of mathematical intrinsics to operate on that data.
Many operations such as type conversion and array process
ing, formerly left to the user, are incorporated into these
object abstractions in a fashion that makes them relatively
transparent.

Another aspect of data management involves interfacing
with the file system because so much effort must be ex
pended on it when using 3GLs. We developed objects that
offer the powerful input/output capabilities of many 3GLs,

October 1992 Hewlett-Packard Journal 75
© Copr. 1949-1998 Hewlett-Packard Co.

Object-Oriented Programming in a Large System

The biggest problem with a large software development effort is that there is just
too much complexity for the human mind to manage. The obvious solution is to
add more people to the project so that the members are not asked to manage
more than their individual abilities permit. Unfortunately, the law of diminishing
returns applies, since each additional team member adds a very large communica
tion and training load on the rest of the team. In addition, there are increased
opportunities for disagreement and conflict.

In some to development of large software systems is like one person trying to
dig a canal using only a shovel. Yes, it is possible, but probably not in that person's
lifetime. If more people are assigned to the task, it can be done more quickly, but
only at an enormous cost. However, if equipped with the right tools (backhoes,
earth movers, etc.), one person can accomplish so much that only a small number
of people are required to complete the project within a reasonable amount of time.

This reducing amount the idea behind object-oriented programming. By reducing the amount
of complexity that one software developer must manage, that one person can be
responsible for a much larger portion of the system. The result is that much higher
productivity is attainable since smaller teams can be used, thereby avoiding the
effects of the law of diminishing returns. Features of object-oriented programming
such as larger and inheritance allow one person to maintain a much larger
portion of a large system than would be possible with a traditional approach.

Encapsulation is probably the strongest reason to use an object-oriented approach
for a large system. Object-oriented systems encapsulate functionality by combin
ing data and associated routines into one package (the class) and then disallowing
access code the data except through one of the routines. When this is done, code
outside of the class is less likely to have dependencies on the structure or mean
ing of the data in the class since its only access to the data is through the access
routines rather than directly to the data. This allows a class to define the exter
nally visible interface separately from the internal implementation. Because of this
basic structure, a class or even an entire hierarchy of classes can be completely
rewritten without affecting other parts of the system as long as the externally
visible interface remains constant.

Inheritance is another reason to use an object-oriented approach in a large system.
Inheritance allows a new class to be written simply by specifying additions or

changes to an existing class. This means that just a few lines of added code can
provide is significant increase in functionality. The other benefit of inheritance is
that code reuse of internal routines is increased substantially. For example, there
is only text single-line text editor in HP VEE, which is used for all single-line text
entry fields. However, since it is easy to add to the behavior of the editor class
through inheritance, the numeric fields that allow constant expressions as numeric
input editor. just a very small incremental effort over the original line editor. They
simply add to the "accept" mechanism at the end of an editing session and pass
the typed string to the parser for evaluation as an expression before attempting to
record the numeric result.

However, features such as encapsulation and inheritance do not automatically
result practices a system that is easier to maintain and build. Very careful design practices
must be followed and the team members must be motivated to do high-quality
work. partitioning the most important design practice is careful partitioning of the
system so that complexity in one area is not visible in an unrelated area.

An object-oriented approach coupled with careful design practices will often
cause the software development effort to seem harder than with a more tradi
tional approach. For example, in a traditional approach, if a variable in one module
needs reference be accessed in another module, it is easy to declare that reference directly
to the compiler. In an object-oriented approach, it is common for these variables to
exist only as instance variables, which are not allocated until the owning class
has been instantiated. This means that the compiler cannot reference a value
directly because it doesn't exist until run time. Therefore, a more complete solu
tion means be devised to find the required value. This usually means that a mes
sage the for the value must be sent to the object that knows the answer with
out ever the accessing the variable. This sounds harder, and it is, but in the
long run the resulting code is much more maintainable and extendable.

William L Hunt
Development Engineer
VXI Systems Division

but present them to the user by means of an interactive dia
log box to eliminate the need to remember syntax. Each of
these dialog boxes represents a single transaction with the
file such as read, write, or rewind, and as many transactions
as necessary can be put into a single file I/O object.

Engineering Graphics
For engineering graphics, the task of finding a higher level
of abstraction was relatively easy. Unlike data management,
engineering graphics is a fundamentally visual operation and
as such it is clear that a single element in a block diagram
can be used to encapsulate an entire graphical display.
Therefore, we just developed the basic framework for each
type of graph, and we present these to the user as graph
displays that require only minor interactive configuration. In
this area we had a rich set of examples to draw from because
of the wide variety of highly developed graphs available on
HP instruments. In some cases, we were even able to reuse
the graphics display code from these instruments.

Instrument Control
Instrument control is a collection of several problems:
knowing the commands required to execute specific opera
tions, keeping track of the state of the instrument, and (like
file I/O) remembering the elaborate syntax required by 3GLs
to format and parse the data sent over the bus. We developed

two abstractions to solve these problems: instrument drivers
and direct I/O.

Instrument drivers have all of the command syntax for an
instrument embedded behind an interactive, onscreen panel.
This panel and the driver behind it are developed using a
special driver language used by other HP products in addi
tion to HP VEE. With these panels the task of controlling the
instrument is reduced to interacting with the onscreen panel
in much the same fashion as one interacts with the instru
ment front panel. This is especially useful for modern card-
cage instruments that have no front panel at all. Currently
HP provides drivers for more than 200 HP instruments, as
well as special applications that can be used to develop
panels and drivers for other instruments.

In some situations instrument drivers are not flexible
enough or fast enough, or they are simply not available for
the required instruments. For these situations, we developed
direct I/O. Direct I/O uses transactions similar to the file I/O
objects with added capabilities for supporting instrument
interface features such as sending HP-IB commands. Direct
I/O provides the most flexible way to communicate with
instruments because it gives the user control over all of the
commands and data being sent across the bus. However,
unlike instrument drivers, the user is also required to know
the specific commands required to control the instrument.

76 October 1992 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

To simplify the process of reconfiguring an instrument for a
different measurement, direct I/O also supports the upload
ing and downloading of learn strings from and to the instru
ment. A learn string is the binary image of the current state
of an instrument. It can be used to simplify the process of
setting up an instrument for a measurement. A typical use of
this feature is to configure an instrument for a specific mea
surement using its front panel and then simply upload that
state into HP VEE, where it will be automatically down
loaded before making the measurements. Thus, the user is
saved from having to learn all of the commands required to
initially configure the instrument from a base or reset state
before making the measurement. In most cases the user is
already familiar with the instrument's front panel.

Multiple Applications
Multiple application integration turned out to be one of the
easiest tasks in HP VEE, since the inherent parallelism of
multiprocess operations can be expressed directly in a
block diagram. Each element of a block diagram must
execute only after the elements that provide data for its in
puts. However, two elements that do not depend on each
other can execute in any order or in parallel. This feature,
along for the powerful formatting capabilities provided for
interprocess communication, allows the integration and
coordination of very disparate applications regardless of
whether they exist as several processes on one system or as
processes distributed across multiple systems. The only
object abstractions required to support these activities are
those that act as communication ports to other processes. A
pair of objects is available that supports communication
with local processes (both child and peer) using formatting
capabilities similar to those used by file and instrument I/O.

Finally, we needed to develop objects that would encapsu
late several other objects to form some larger user-defined
abstraction. This abstraction is available using the user ob
ject, which can be used to encapsulate an HP VEE block
diagram as a unit. It can have user-defined input and output
pins and a user panel, and from the outside it appears to be
just like any other primitive object.

Refining the Design
While still in the early cycles of our spiral lifecycle, we
sought a limited number of industry partners. This enabled
us to incorporate design feedback from target users attempt
ing real problems well before encountering design freezes.
Although there were fears that such attempts would slow
our development effort because of the additional support
time required, we felt that the payback in design refinement
for both user interface elements and functional elements
was substantial.

One example of such a refinement in the user interface is
the automatic line routing feature. Before line routing was
added, our early users would often spend half of their time
adjusting and readjusting the layouts of their programs.
When asked why they spent so much time doing this, they
generally were not certain, but felt compelled to do it any
way. We were very concerned about the amount of time
being spent because it reduced the potential amount of

productivity that could be gained by using HP VEE. Thus
we added automatic line routing and a snap grid for easier
object alignment so that users would spend less time trying
to make their programs look perfect.

An example of a refinement in the functional aspects of the
product is the comparator object. Several early users en
countered the need to compare some acquired or synthe
sized waveform against an arbitrary limit or envelope. This
task would not have been so difficult except that the bound
ary values (envelope) rarely contained the same number of
points as the test value. Before the comparator was devel
oped, this task required many different objects to perform
the interpolation and comparison operations on the wave
forms. The comparator was developed to perform all of
these operations and generate a simple pass or fail output.
In addition, it optionally generates a list of the coordinates
of failed points from the test waveform, since many users
want to document or display such failures.

Conclusion
Early prototypes of HP VEE were used for a wide variety of
technical problems from the control of manufacturing pro
cesses to the testing of widely distributed telecommunica
tions networks. Many began exploring it to orchestrate the
interaction of other applications, especially where network
interconnections were involved.

Current experience suggests that the block diagram form of
problem expression and its companion solution by means of
dataflow models has wide applicability to problems in many
domains: science, engineering, manufacturing, telecommu
nications, business, education, and many others. Many
problems that are difficult to translate to the inline text of
third-generation languages such as Pascal or C are easily
expressed as block diagrams. Potential users who are ex
perts in their own problem domain, but who have avoided
computers in the past, may now be able to extract real value
from computers simply because they can express their prob
lems in the more natural language of the block diagram. In
addition, large-scale problems that require the expert user to
orchestrate many different but related applications involv
ing multiple processes and/or systems can now be handled
almost as easily as the simpler problems involving a few
variables in a single process.

Acknowledgments
We would like to thank design team members Sue Wolber,
Randy Bailey, Ken Colasuonno, and Bill Heinzman, who
were responsible for many key features in HP VEE and who
patiently reviewed the HP Journal submissions. We would
also like to thank Jerry Schneider and John Frieman who
pioneered the testing effort and provided many key insights
on product features and usability. More than any other we
would like to thank David Palermo without whose far-sighted
backing through the years we could not have produced this
product.

Reference
1. B.W. Boehm, "A Spiral Model of Software Development and
Enhancement," IEEE Computer, May 1988.

1992 Hewlett-Packard Journal 77 © Copr. 1949-1998 Hewlett-Packard Co.

Developing an Advanced User
Interface for HP VEE
Simplicity and flexibility were the primary attributes that guided the user
interface development. Test programs generated with HP VEE can have
the same advanced user interface as HP VEE itself.

by William L. Hunt

HP VEE, Hewlett-Packard's visual engineering environment,
was developed as a programming tool for nonprogrammers.
In the past, computer users were required to move into the
computer's domain. Our goal for HP VEE was to bring the
computer into the user's domain. This meant developing a
system that operates in the way that our target users expect.

To accomplish this goal, ease of use was of critical impor
tance. However, because most target users of HP VEE are
highly educated technical professionals, simple-minded ap
proaches to user interface design were not appropriate. For
this audience, the system must be powerful and flexible, but
must not become an obstacle because of overprotection.

With these constraints in mind, we decided that the primary
attributes of HP VEE should be simplicity and flexibility.
Learnability was also considered to be important, but we
felt that no one would bother to learn the system unless it
were a truly useful and powerful tool. Therefore, we felt that
we could compromise some learnability in situations where
a great deal of the power of the system would be lost if
learnability were our primary goal. Our overall approach,
therefore, was to design a system that is as natural to learn
and use as possible and powerful enough that our customers
would be excited about learning how to use it.

Development Guidelines
In general, simplicity is very important in a user interface
because it frees the user from having to worry about unnec
essary details or rules. The underlying goal of a good user
interface is to increase the communication bandwidth be
tween the computer and the user. However, this does not
mean that there should be a myriad of displays and indica
tors. In fact, quite the opposite is true. The more things there
are for the user to comprehend, the greater the chance that
something will be missed. The goal, therefore, should be to
reduce the amount of data that the user must be aware of
and present the essential data in the simplest and most com
pact way possible. Similarly, any piece of data presented to
the user should always be presented in a consistent way be
cause this is known to increase comprehension dramatically.

An example of a simple way to present information to the
user is the 3D look used in the OSF/Motif graphical user
interface and more recently in other systems such as Micro
softÂ® Windows. When used properly, the 3D borders can be
used to communicate information about the state of indhid-
ual fields without consuming any additional display space.

Fig. 1 shows how HP VEE uses the 3D look to identify how
fields will respond to user input. Fields that are editable are
displayed as recessed or concave. Buttons and other fields
that respond to mouse clicks are shown as convex. Fields
that are only used as displays and do not respond to input
are shown as flat. These states are very simple to compre
hend because the three states are unique in the way that
they look and operate. Without realizing it, users will natu
rally learn how to identify which fields are editable, which
fields can be activated, and which fields will not respond to
input. This 3D display technique allows these states to be
displayed without any additional display area.

Fundamentally, HP VEE was designed around the concept
of direct manipulation. This means that wherever possible, a
setting can be changed by operating directly on the display
of that setting. This results in a significant simplification for
the user since special operations or commands are not gen
erally required to make changes to settings. For example,
the scale of a strip chart is shown near the edges of the
graph display (Fig. 2). If the user wants to change the graph
scaling, the limit fields themselves can be edited. It is not
necessary to make a menu choice to bring up a pop-up dia
log box for editing the scale. In many other systems, making
any change requires a menu pick. This effectively reduces a
system to a command-line interface that happens to use a
mouse and menus instead of the keyboard. Such a system is
no easier to use than the command line interface systems of
the past.

Flexibility is more important for an easy-to-use system than
for more traditional systems because there is a perception
that power and ease of use cannot be combined in the same
system. In the past, powerful systems have generally been

Ampl i t ude

S PitÃ³se Â¡Dtg
Time Span

Fig. some A view containing a noneditable field, two buttons, and some
editable fields.

78 October 1392 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 2. Direct manipulation is useful for settings such as graph
limits.

hard to use, and easy-to-use systems have generally not
been very flexible or powerful. To overcome this perception,
therefore, an easy-to-use system must be very powerful so
that potential customers' fears can be overcome. When de
signing HP VEE, we were very careful to avoid limiting flexi
bility wherever possible. It often seemed as if we were faced
with a choice between ease of use and flexibility. However,
with careful consideration of the alternatives, we usually
found that the more flexible approach could be implemented
with an easy-to-use interface.

Flexible and powerful systems are naturally very complex
because there are so many features and capabilities to re
member. In these systems, it is extremely important that each
area of the system operate in a way that is consistent with
the rest of the system because even the most advanced users
are rarely familiar with all aspects of the system. Users must
be able to rely on their experience with other parts of the
system to help guide them through the unfamiliar areas.
For this reason, consistency was an important guideline
throughout the development of HP VEE.

High performance for interactive operations is critical be
cause users will become frustrated using a product that is
too slow. Very few users will be happy if they must wait an
inordinate amount of time before a particular operation is
complete. The allowable time for the system to complete a
task depends on the nature of the task and what the user is
likely to be doing at the time. For example, a key press
should be echoed back to the user within about 100 ms or
so. If it takes longer, the user may press the key again think
ing that the system didn't get the first one. A pop-up dialog
hriY nr menu should appear within ahnnt 500 ms. Other

tasks such as loading a file can take many seconds before
the user will become annoyed because of sluggish perfor
mance. We created a list of about ten different interactive
operations for which we felt that performance was an im
portant goal. On all supported platforms, many of the opera
tions in this list such as the pop-up menus and dialog boxes
are completed within the required time. Unfortunately, there
are still a few operations that are completed within the spe
cified time limits only on the very fast HP 9000 Series 700
workstations. On the other hand, we have received very few
complaints about interactive performance, so our time limits
may have been overly stringent.

In some situations, such as saving a file to the disk, perfor
mance1 simply cannot be guaranteed. In these cases, continu
ous feedback indicating progress being made is important.

Otherwise, it isn't easy to tell whether something is happen
ing or not. In HP VEE. all user-invoked operations that could
take more than about 200 ms will result in a change to the
mouse cursor. Some of these cursors represent specific ac
tivities such as reading from or writing to the disk. For other
situations, a general hourglass cursor is used. Any action
that is expected to take longer than one or two seconds is
also accompanied by a pop-up message box that indicates
that the operation is in progress.

Reducing the total number of mouse clicks, menu choices,
and various other adjustments required of the user was a
major challenge. Each adjustment required of the user, no
matter how easy, will reduce the user's overall effectiveness.
For this reason, HP VEE is designed to do as much as pos
sible with default settings while allowing adjustments if
more control is desired. Other systems often require that the
user fill out a form each time a new object is selected from
the menu. In most cases, HP VEE will insert default values
for all settings and then allow the user to change them later
if it becomes necessary.

System messages for errors and other reasons are an espe
cially important source of difficulty or frustration for users.
Most software developers seem to take the attitude of a hos
tile enemy when presenting the user with an error message.
However, errors are seldom true user mistakes, but instead
are usually triggered by failings in the system either because
it misled the user or because it did not adequately protect
the user from making the mistake in the first place. In many
cases in HP VEE, we were able to avoid generating errors
simply by restricting available choices to those that would
not result in an error. For example, if a certain combination
of selections will cause an error, we show them as mutually
exclusive choices. In cases where such restrictions could
not be used to avoid the potential for an error, we worked to
simplify the interface so that users would be less likely to
make mistakes in the first place. In cases where errors were
unavoidable, we kept the attitude that error messages should
help the user complete a task. We tried to remember that
the user generally has a valid reason for performing the
operation that resulted in an error.

Two kinds of messages that are common in many systems
are not present in HP VEE. The first is the message "Please
wait." It is irritating to users because they don't want to wait
and they are being instructed to do so. The message is also
unnecessary since more descriptive messages can be used
instead. Messages such as "Reading from file program!" are
much more informative and are nut-nearly so annoying. Theâ€”
other common message is a confirmation box that asks "Are
you sure?" This is also very annoying because the user sel
dom initiates any operation without being pretty sure about
wanting to perform that operation. There are really two rea
sons for asking "Are you sure?" One is to caution the user
about data loss and the other is to protect against accidental
requests.

In HP VEE, we solve the first situation by asking a question
such as "Save changes before clearing workspace?" This has
the same result as "Are you sure?", but does not sound as if
the user's choice (or sanity) is being questioned.

In the second situation, accidental requests are better solved
by making the input mechanisms easier to operate without
error or by making corrections easy to perform. For example,

October 1992 Hewlett-Packard Journal 79

© Copr. 1949-1998 Hewlett-Packard Co.

instead of asking "Are you sure?" to find out if the user really
wants to delete an object, HP VEE puts the deleted object
into the cut buffer so that if the user decides that a mistake
was made, the paste operation can be used to restore the
deleted object.

Attention to detail is very important to a user. Most systems
available today lack the small details that make a system
more convenient and easier to use. In HP VEE, we have at
tempted to pay attention to as many of these small details as
possible. For example, when connecting a line to a box, an
outline is displayed around the pin that would be connected
if the line were released at that point. Another example of a
very small detail is that HP VEE allows objects to be resized
as they are being placed on the workspace for the first time.
These seemingly minor details help reduce the amount of
frustration that users often feel.

Program Visualization Features
In a traditional programming environment, the programmer
must spend a large fraction of the development time think
ing about details of the programming process including the
language syntax, debuggers, and so on. Since HP VEE allows
the user to think almost exclusively in terms of the problem
domain, most of the development time and effort is spent on
solving the problem instead of the programming details.
This is the primary source of the productivity gains that
many users of HP VEE have experienced. However, even
though HP VEE allows programs to be expressed directly in
terms of the problem, not all user-written programs will run
correctly the first time. Although the so-called accidental
complexities1 of program development such as language
syntax and semantics have been reduced or even eliminated,
the fundamental complexities of the problem itself still re
main. Therefore, once an HP VEE program is developed, it is
likely that some aspect of it will not quite work as expected.
For this reason, we developed several tools that can be used
to visualize the execution of a program to help identify the
source of any problems.

Show Execution Flow animates the execution of the program by
outlining each object as it begins to execute and then eras
ing that outline when execution is complete. Besides helping
to visualize how the program executes, this is useful when
trying to understand performance issues, since an object in
the program that consumes a lot of time will be highlighted
for more time than other objects. HP VEE also has a timer
object, which allows a more objective way to measure
performance.

Show Data Flow animates the movement of data as it travels
between objects in the program by displaying an icon mov
ing rapidly along each line as data flows across it. This helps
the user visualize the relationships between the data and the
execution of the objects of a dataflow program. Both Show
Execution Flow and Show Data Flow slow the execution of HP
VEE programs so much that they are designed to be turned
on and off separately.

All data in HP VEE has additional information such as size
and shape associated with it. This information is maintained
so that one operation can work with a variety of different
data types and shapes. For example, math functions such as
sin() can operate on either an individual number or an array
of numbers with any number of elements. This is possible
because the size and number of dimensions are packaged
with the data. Other information such as the name of the
data and mappings (the implied domain of the data) can also
be associated with the data. The line probe feature allows
the user to examine the data and this associated information
at any time.

The execution of a program can be halted when execution
reaches a particular object simply by setting that object's
breakpoint flag. Breakpoints can be set on any number of
objects at any time. When execution reaches an object with
its breakpoint flag set, the program will pause and an arrow
pointing to that object will appear. At that point the step
button can be used to single-step the program one object at
a time or the line probe can be used to examine data.

If an error occurs during execution of the program and no
error recovery mechanism has been attached, a message
will be displayed and an outline will highlight the source of
the error visually. This allows the user to locate the source
of the error more quickly.

User Interface for HP VEE Programs
Since a user of HP VEE should be able to generate programs
with the same advanced user interface as HP VEE itself,
several important capabilities have been incorporated into
HP VEE to make the task of building impressive-looking
programs simple.

For example, data can be entered using a variety of data
entry objects. The simplest of these is a text field that accepts
a single line of textual data. Numeric fields of various types
such as integer, real, complex, or polar complex accept the
appropriate numeric data. In addition, these numeric fields
can accept constant expressions such as "SQRT(45)" or
system-defined constants such as "PI." When typed, these
constant expressions are immediately evaluated and the
result is converted to the expected type by the input field.
Since all editable fields in HP VEE share the same editing
code internally, any numeric field in the system that requires
a numeric entry can also accept a constant expression.

There are other more advanced mechanisms for entering
data or specifying selections to an HP VEE program. Integer
or real numeric input can be generated within a predefined
range by using the mouse to drag the handle of a slider ob
ject. Selections from a list of acceptable values can be made
using an enumerated list box, which can be displayed as
radio buttons, as a single button that cycles through the list
of values, or as a button that accesses a pop-up list box of
choices. An HP VEE program can be designed to pause until
the user is ready to continue by using the Confirm button.

80 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Data can be displayed in a variety of ways. In addition to
textual displays, real or integer numbers can be displayed
on a meter object, which can show \isually where a number
falls within a range. Graphical displays such as XY graphs
and polar plots show two-dimensional plots of data and
can be interactively scrolled or zoomed. Stripcharts graph
a continuous scrolling history of the input data.

All of these input and output types would have limited value
if they could only be displayed when the rest of the HP VEE
program with all of its lines and boxes is also visible. For
this reason, HP VEE is designed with a feature called user
panels, which allows an advanced user interface to be at
tached to a user-written HP VEE program. The user panel is
built using an approach similar to many of the available user
interface builders. Elements to be placed on the user panel
are selected from the HP VEE program and added to the
panel. The user can then move and resize these elements as
appropriate for the design of the panel. Other layout options
such as whether a title bar appears can also be adjusted.
Since the elements on the user panel are selected from the
user's program, no external code is required and the finished
program is easier to build than with most user interface
builder tools.

Another important aspect of an advanced human interface is
the ability to hide data until the user has asked to examine
it. HP VEE is designed with a feature called Show On Execute
which allows HP VEE programs to use pop-up windows to
hide data until a user request is received. This works by
associating a user panel with a user object (similar to a sub
routine in traditional programming languages) and enabling
the Show On Execute feature. When the user object begins
executing, the associated user panel is automatically dis
played. When execution of the object is complete, the user
panel is erased. Messages such as "Writing test results to file"
can be displayed using this mechanism simply by putting the
appropriate message on the associated user panel. If it is
desirable to pause the program until the user has finished
examining the displayed panel, a confirm object can be used.

Programs developed in HP VEE are highly malleable; they
can be changed and adjusted as much as desired. However,
in many situations it is desirable to protect the program
from being changed. The secure feature in IIP VEE accom
plishes this by displaying only the user panel and making it
impossible to alter the program or even look at it after the
program has been secured.

Object
V i e w

View3d
ConView

DevCarrier
SubProg

IPEdilor
DispDriver

Container
Real
Inl
Complex

Device
Context

Fig. 3. Simplified class hierarchy of HP VEE.

Using all of these features allows users to generate complete
application programs with professional appearances without
having to work outside of the simple dataflow environment.

Internal Architecture
Fig. 3 shows a simplified class hierarchy for HP VEE show
ing some of the key classes in the system and how they re
late to each other in the inheritance hierarchy. The Object
class is at the root of this hierarchy and implements the fun
damental protocol for all objects in the system. This includes
creating, freeing, and copying objects. The key subclasses of
Object include View, which maintains a rectangle on the dis
play, Container, which holds a unit of data, and Device, which
represents the inner workings of an element in an HP VEE
block diagram.

The fundamental visible element in HP VEE is implemented
with the class called View. It maintains a single rectangular
region on the display and can be transparent or a composite
of other views. The ViewSd class adds a solid background
color and a 3D border to View.

Views are organized into a hierarchy tree based on the dis
play stacking order. The root of this tree is called DispDriver.
II is always mapped to overlay the system window allocated
to HP VEE. It performs all low-level screen display opera
tions such as drawing lines and filling regions. It also han
dles the window system interface functions such as repaint
requests and dispatching of input events. Fig. 4 shows a
composite of views in a view hierarchy with some of the
views labeled with the name of their associated class. Fig. 5
shows the complete hierarchy tree of the views in Fig. 4.

GenField

Fig. 4. A composite view with
sonic of l he component views

lain l< 'I

October l!l!)2 Hewlett-Packard JournaJ 81
© Copr. 1949-1998 Hewlett-Packard Co.

IPEdJtor
HScrol lBar
VScrol lBar
StretchBox
ContextView

DevCarr ier
IFromThru

St r ingView
CXField
St r ingView
CXField
S t r ingView
CXField

Ti t leBar
GenField

M e n u B a r
T i t leBar

GenField
P i x m a p V i e w
Button
Button
Button
Button

Fig. 5. Display hierarchy tree.

Subviews are views that are attached to another view called
the superview in the display hierarchy tree. Subviews are
clipped at the edges of their superview. In this way, each
level of the view hierarchy tree limits the visual boundaries
of all views below it. This view hierarchy indirectly de
scribes the view stacking order, which ultimately controls
which views appear to be on top and which ones are hidden.

Each view maintains a description of the region on which it
is allowed to display itself. This clip region is calculated by
taking its own bounds, subtracting any region that falls out
side the bounds of any view in its superview hierarchy, and
then subtracting any views that partially or completely
cover it or any view in its superview hierarchy.

Repainting
When repainting an area that it is maintaining, a view may
either use the clip region to limit the areas it actually changes
on the display, or it may paint any area that it owns and then
paint every view that appears closer to the user in the view
stack. The full view stack repaint method has nothing to
calculate or check before it begins painting itself completely
and then painting anything that might be on top of it. If noth
ing is on top of it, then the complete stack repaint is very
efficient because it is so simple. However, if there are many
other views covering the view to be repainted, the full stack
repaint will be very slow because of all of the unnecessary
repainting that must be done. The clip region repaint method
is much more efficient in this situation since only those
areas that are directly visible to the user will be repainted.
This means that no unnecessary repainting must be done.

Unfortunately, the clip region is at best an approximation
since views are allowed to display images of arbitrary com
plexity (such as text) and be transparent in other areas. This
gives the user the illusion that views can have any shape
without incurring the performance penalties associated with
nonrectangular views. It would be very costly to calculate
these regions accurately, so only the approximation based
on the rectangular view bounds is actually calculated. This
means that repaints using the clip region method will not
correctly update regions behind transparent areas of other
views. Therefore, the clip region repaint method is used in
only a few special cases.

Input events such as mouse clicks are dispatched to individ
ual views in the system using a two-phase search mecha
nism. In the first phase, working from back to front, each
view in the view stack where the event occurred asks the
views in front of it to process the event. When there are no
more views in front of the current view, the second phase
begins with an attempt to consume the event. Working from
front to back, each view in the view stack (as determined
during the first phase) is given an opportunity to consume or
ignore the event. If the view takes no special action, the
event is passed to the next view down in the view stack. If
the the view intends to consume the event, it does so by
performing an action associated with the event such as indi
cating that a button has been pressed and then marking the
event as consumed. This process continues until the event is
consumed, or until the DispDriver class is given the event (this
class consumes all events).

Other Classes
The visible part of each object in an HP VEE program is
maintained by the DevCarrier class. DevCarrier's job is to main
tain the visual appearance of all objects in the system by
showing the terminal pins, maintaining the various high
lights and outlines required by HP VEE, and allowing vari
ous editing operations on the user's program such as con
necting lines and adjusting the sizes or positions of objects.
DevCarrier does not display any object-specific information.
That information is displayed by object-specific view
classes, which are attached to DevCarrier as subviews.

User objects are specialized objects that are built using a
subclass of DevCarrier called SubProg. SubProg maintains a
visual subprogram which acts just like a normal object when
viewed from the outside, but contains an internal dataflow
network of its own that is just like the main program. All of
the dataflow networks in HP VEE are maintained by a class
called ConView (context view). It is the gray background area
behind the lines and boxes in a dataflow network.

The top-level workspace environment class â€” IPEditor (iconic
program editor) â€” is just a special case of SubProg and is
therefore built as a subclass of SubProg. It is attached as the
only subview of DispDriver and maintains the top-level editing
environment. It is the same as SubProg, except that it must
maintain the menu bar, run/stop buttons, and other features
specific to the top level.

The context view class (ConView) maintains a list of all ob
jects in the context and the lines connecting them. When the
context view is asked to repaint itself, it first paints its back
ground color (gray, by default), and then paints all lines in
the line list. Then each HP VEE object in the context is
painted according to the stacking order. If an HP VEE object
falls partially or completely outside the context view's
bounds, then according to the clipping rules, that view will
be only partially painted or not painted at all.

The clipping and repaint algorithms allow an HP VEE pro
gram to be visually much larger than the screen space al
lotted to it. By adding navigation controls such as the back
ground scroll capability, a very large dataflow network can
be supported even on a comparatively small screen.

82 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Model-Mew Architecture
HP VEE is organized around a model-view architecture. This
is similar to the model-view-controller architecture used in
other object-oriented systems except that we chose to
merge the functionality of the controller into the view. The
fundamental assumption in the model-view architecture is
that the internal data and program elements (the models)
can operate without any knowledge of or dependence on
their visual representations (the views). By separating the
system at this natural boundary, both the views and the
models can be written more simply without any unneces
sary dependencies. One feature of this architecture is that
one model can be attached to any of several different views
without any special support in the model. For example, a
model that contains a real number can be attached to a text
field or to a meter. Since the properties of the number do
not change based on how it is displayed, no changes are
required of the class that holds the number. However, since
there are few similarities between a meter view and a text
view, they need not be built with one view class.

User panels are one area that really benefit from the split
between models and views. When the user selects an HP
VEE object such as a slider and asks that it be added to the
user panel, several things happen internally to make that
happen. First, if a user panel has not been created for this
program or user object, one is created. The user panel class
is similar in concept to the context view class, but without
support for interconnections required for dataflow net
works. Next, an instance of the PanelCarrier class is created to
hold a copy of the object-specific part of the slider view.
This copy is created from the original and attached to the
new panel carrier and to the original slider model (which is
not copied). The panel carrier is then attached to the user
panel view.

One of the most significant architectural impacts of the im
plementation of user panels is the fact that there can be
many independent views attached to the same underlying
model at the same time. Because of this architecture, it is
easy for panels from user objects to be added as a unit to
higher-level panels. This allows the creation of complex
panels consisting of grouped controls and displays.

The DispDriver class is designed to be the only place where
calls to the underlying window system (such as the X Win
dow System) occur. This allows the display driver to be re
placed if appropriate when porting to a new platform. Dur
ing development, for example, we used a driver written to
talk directly to the display card of an HP 9000 Series 300
computer because it ran so much faster than the window
systems. Now that very high-performance workstations are
available, this is no longer necessary.

Printing is handled simply by replacing DispDriver with the
printer driver class, which knows how to perform graphics
operations on a printer. The information intended for the
printer is just "displayed" on the printer and no special
printer support must be developed aside from the printer
driver itself. This also allows the print output to match the
screen display very nicely.

Acknowledgments
Building an advanced user interface is really not difficult,
but it takes a great deal of thought and perseverance. It also
requires support from management. We were lucky on the
HP VEE team because we had managers who understood
the value of a good user interface. They encouraged the
team to produce the best product that we were capable of
even if the schedule would be put at risk. Of course, the
team members themselves were very highly motivated to
produce an exciting product. John Bidwell, the HP VEE
project manager, provided the leadership and management
support required for our success. He was able to resist the
temptation to ship the product before it was ready, and kept
all of the various team members focused on the goal of a
truly easy-to-use product. Sue Wolber, Randy Bailey, and
Ken Colasuanno each contributed to the overall usability of
the system in each of their respective areas. Jon Pennington
performed usability testing and provided most of the usability
feedback during development.

Reference
1. P. Brooks, "No Silver Bullet: Essence and Accidents of Software
Engineering," IEEE Computer, September 1987, pp. 43-57.

Microsoft is a U.S. registered trademark of Microsoft Corp.

October 1992 Hewlett-Packard Journal 83

© Copr. 1949-1998 Hewlett-Packard Co.

HP VEE: A Dataflow Architecture
HP VEE is an object-oriented implementation. Its architecture strictly
separates views from the underlying models. There are two types of
models: data models and device models. Special devices allow users to
construct composite devices.

by Douglas C. Beethe

The HP VEE dataflow programming environment was devel
oped that the specific objective of providing an interface that
would allow users to express a problem in block diagram
form on the screen and then execute it directly. Dataflow
programming was chosen because of its direct correlation
to the block diagram models we wished to emulate.

Previous efforts in industry and academia related to data
flow programming had yielded some interesting results, but
general applicability had not yet been established. Thus our
early research efforts were directed primarily at the question
of whether we could solve some of the problems that had
plagued earlier attempts and prove general applicability.

The design and construction of HP VEE used object-oriented
technology from the beginning. We had enough experience
with procedural coding technology to realize that a project
like HP VEE would be too complex to achieve with proce
dural technology. The architecture that evolved from this
development is the subject of this article. The design of vari
ous elements of the underlying HP VEE architecture will be
discussed as will the manner in which they work together to
produce the executable block diagram as a dataflow model.

The Model- View Paradigm
One of the characteristics of the HP VEE architecture that is
common to most object-oriented implementations is the
strict separation between models and views. Most users are
familiar with the world of views, and indeed often make no
distinction between the view of an object and its underlying
model.

From a functional point of view the model is the essence of
an object, incorporating both the data (state variables) that
gives the object its uniqueness, and the algorithms that oper
ate on that data. In HP VEE, by definition, the model oper
ates independently of the view, and does not even know of
the existence of any graphical renderings of itself , except as
anonymous dependents that are alerted when the state of
the model changes (see Fig. 1).

There are many examples of applications that have views
possessing no underlying functional models. Consider the
various draw and paint programs, which allow the user to
create very sophisticated views that, once created, are inca
pable of performing any function other than displaying
themselves. Likewise, there are numerous examples of ap
plications that support very sophisticated functional models
but lack any ability to display a view of those models, be it
for passive display of state or for active control.

Most of the scientific visualization software appearing today
is used to create views of the data output of functional mod
els that have little or no display capability. Most of the views
that are seen by the HP VEE user are actually graphical ren
derings of the states of underlying models. In the interactive
mode, access to the models is by means of these views,
which communicate with their respective models to change
their the initiate execution, and so forth. For example, the
view of the ForCount iterator has a field in which the user can
enter the number of times the iterator should fire at run
time. Upon entry, this value is sent to the underlying device
model, where it is kept as a state variable. When this state
variable is changed, the model sends out a signal to anyone
registered as a dependent (e.g., the view) that its state has
changed, and the view then queries the model to determine
the appropriate state information and display it accordingly
(see Fig. 2).

This strict separation between model and view might seem
excessive at first, but it results in a partitioning that makes
the task of generating the two different kinds of code (very
different kinds of code!) much easier from the standpoint of
initial development, portability, and long-term code mainte
nance. It also eases the job of dealing with noninteractive
operations in which HP VEE is running without any views at
all, either by itself or as the slave of another application.
And finally, this separation eases the task of developing ap
plications that must operate in a distributed environment
where the models live in one process while the views are

State Variables

â€¢ Array Size

â€¢ Array Data

Operations

â€¢ Set/Get Array Size
â€¢ Set/Get Value at <index>

â€¢ Sort Array Values
â€¢ Get Mm/Max Value

Fig. 1. Two different views of the same underlying model.

84 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Edi t Set Count (l
Tel l Al l Dependents (Views)

that Count Has Changed

Display: Get Count
Value as Formatted '
Text (for Display!

ForCount Model
State Variables

Operations

â€¢â€¢ Set Count <value>
â€¢ Get Count Text

Fig. time. Interaction of a view and the underlying model at edit time.

displayed by another process, possibly on an entirely differ
ent system. This last aspect is becoming more and more
important in an application world that is taking increasing
advantage of networked systems.

HP VEE itself is composed of two kinds of models. The first
is the device model, which acts like a black box having in
puts, outputs, and some operational characteristic that
transforms the data at the inputs to the result at the outputs.
The second is the data model (container), which handles the
transport of information along the data lines, which inter
connect devices. The data model also provides mathemati
cal functions, which can be invoked to operate on the data,
and formatting and deformatting functions, which change
the representation of the data when required for display or
for communication with some other application that requires
the data in a different form. Both types of models will be
discussed in some detail.

Data Models
The fundamental abstraction for information in HP VEE is
the container object (Fig. 3). Containers can hold data for
any of the supported data types: text, enumerated, integer,
real, complex, polar complex, coordinate, waveform, spec
trum, and record. Both scalars (zero dimensions) and arrays
from one to ten dimensions are supported. In addition, the
dimensions of array containers can be mapped in either lin
ear or logarithmic fashion from a minimum value at the first
cell of a dimension to a maximum value at the last cell of
that dimension. This allows an array of values to have some
physical or logical relationship associated with the data. For
example, a one-dimensional array of eleven measurements

Container Model

State Variables

â€¢ Name
â€¢ Data Type
â€¢ Number of Dimensions: 0 10.

â€¢ Dimension Sizes

â€¢ Dimension Mappings [from, through]

Operations

â€¢ Configuration
â€¢ Value Assignment/Access
â€¢ Type Conversion

â€¢ Mathematics
â€¢ Text Generation

Fig. 3. Container model attributes.

Supported Data Types
â€¢ Text
â€¢ Enum
â€¢ Integer, Real, Time
â€¢ Complex, Polar Complex

â€¢ Coord, Waveform, Spectrum
â€¢ Record

can be mapped from 0 to 32 cm to indicate the physical rela
tionship of the values in each position in the array to some
real-world phenomenon. The first value would be at 0 cm,
the next at 3.2 cm. the next at 6.4 cm. and so on.

One of the properties of containers that is used extensively
in HP YEE is the knowledge of how to transform to another
type on demand. The automatic form of this transform is
allowed only for transforms that incur no loss of informa
tion. This has the effect of allowing most promotions, but
disallows any automatic demotions. For example, integer
can be promoted to real, and real to complex or polar com
plex, but complex cannot be demoted automatically to real.
To do so would likely cause the loss of information that
would not reappear in the promotion of that real value back
to complex. An interesting special case of this is the revers
ible transformation between waveform and spectrum (time
and frequency domains). While these data types seem to
have the same irreversible relationship to each other as the
real and complex types just discussed, it is a well-known
fact that a reversible transformation exists between these
two special types by means of the Fourier transform. For
example, a 256-point waveform is transformed to a 129-point
spectrum (ignoring the symmetrical values with negative
frequency), and the same spectrum regenerates the original
256-point waveform by means of the inverse Fourier
transformation (Fig. 4).

Another powerful property of containers is their inherent
knowledge of data structure as it applies to mathematical
operations. At first glance, operations such as addition and
subtraction seem relatively simple, but only from the stand
point of two scalar operands. For other structural combina
tions (scalar + array, array + scalar, or array + array) the task
requires some form of iteration in typical third-generation
languages (3GLs) like C that has always been the responsi
bility of the user-programmer. Containers encapsulate these
well-understood rules so that the user deals with, say, A and
B simply as variables independent of structure. When any of
the nontrivial combinations is encountered, the containers
decide among themselves if there is an appropriate struc
tural match (scalar with any array, or array with conforma!
array) and execute the appropriate operations to generate
the result.

Other more complicated operations with more robust con
straints (e.g., matrix multiplication) are handled just as easily
since the appropriate structural rules are well-understood
and easily encapsulated in the containers. These properties
aid the user in two ways. First, the user can express power
ful mathematical relationships either in fields that accept

Waveform Display

_n_n_n
0 m s 2 0 m s

Fig. 4. Automatic transformation of a time-domain waveform
(e.g., 256 real values, 0 to 20 ms) to a frequency-domain spectrum
(129 complex values, 0 to 6400 Hz).

October 1992 Hewlett-Packard Journal 85
© Copr. 1949-1998 Hewlett-Packard Co.

Device Mode l

State Variables

â€¢ Name and Description

â€¢ Input/Output Configuration

â€¢ Device-Specific Properties

Operations

â€¢ Add/Delete Inputs and Outputs
â€¢ Run-Time Validation
â€¢ Device-Specific Execution

â€¢ Propagation

Fig. 5. Attributes of a simple device model.

constant expressions or in any of several delayed-evaluation
fields the Formula, If/Then, ...) without having to deal with the
cumbersome iteration syntax of 3GL programming. This by
itself has the pleasant side effect of eliminating much if not
most of the iteration in many applications, compared to their
3GL equivalents. Second, the interconnection of the various
objects that make up a model in HP VEE is much simpler
when any of the inputs is constrained to a specific data type.
Since the containers know how to respond to most requests
for type change, the user is freed from the cumbersome task
of explicitly changing (casting) the original type to the re
quired type. For example, the inputs to a spectral display
that requires a spectrum input will not disallow connection
to a waveform (time-series data) because the output supply
ing the waveform will transform it to a spectrum on demand
at run time. This same capability is used during the evalua
tion of any mathematical expression, thus allowing the user
to intermix types of operands without explicit type casting.

Device Models
Fig. 5 shows the attributes of a simple device model. Each
device can have its own inputs and outputs. Many have user-
controllable parameters that are accessed as constants
through the panel view of the device or as optionally added
inputs. In general, the device will execute only when each of
the data inputs has been given new data (including nil data).
Thus the data inputs to any given device define a system of
constraints that control when that device can execute. This
turns out to be quite natural for most users since the data
relationships that are depicted by the data lines that inter
connect devices generally map directly from the block dia
gram of the system in question, and often are the only form
of constraint required for the successful execution of a
model.

There are numerous cases, however, where an execution
sequence must be specified when no such data dependen
cies exist. Such cases typically fall into two categories:
those where there is some external side effect to consider
(communications with the real world outside my process)
and those that deal explicitly with real time. To deal with
this situation we developed the sequence input and output
for each device (on the top and bottom of the device, re
spectively), as shown in Fig. 6. The sequence output be
haves like any other data output by firing after successful
execution of the device except that the signal that is propa
gated to the next device is a always a nil signal. Likewise,
the sequence input behaves like any other data input with
one exception. When connected it must be updated (any data
will do, even nil) along with any other data inputs before the

Sequence Output
Sequence Input

Fig. 6. While B and C both need the data from A, the sequence
connection between B and C will cause C to execute after B.

device will be allowed to execute, but unlike other data in
puts, connection is not required. Thus any time it is required
that A must execute before B where no other data dependen
cies exist between the two devices, it is sufficient to connect
the sequence output of A to the sequence input of B.

For users who have already been introduced to program
ming in third-generation languages such as Pascal, C, or
BASIC this can require a paradigm shift. Experience with
such users has shown that they are often preoccupied with
sequencing (since 3GLs almost universally use control-flow
paradigms) and have a difficult time at first believing that
the data constraints represented by the lines that intercon
nect the devices are sufficient to define a robust sequence of
execution. It is only after using the system for a time that
they are weaned away from this need to sequence each and
every device explicitly and begin to feel comfortable with
the dataflow paradigm.

Contexts
Several types of devices are supplied as primitives with HP
VEE, including those used for flow control, data entry and
display, general data management, mathematical expressions,
device, file, and interprocess I/O, virtual signal sources, and
others. There is also a mechanism that allows users to con
struct special devices with their own panels and a specific
functional capability. This device is known as a UserObject
and is essentially a graphical subprogram.

UserObjects (Fig. 7) encapsulate networks of other devices
(including other UserObjects) and have their own input/output
pins and custom panel displays. Viewed as a single collec
tive object with its own panel, each UserObject operates un
der the same rules as any primitive device: all data inputs
must be updated before the UserObject will execute its inter
nal subnet. Each UserObject will contain one or more threads,
which in in parallel at run time. In addition, threads in
subcontexts (hierarchically nested contexts) may well be

Fig. into a UserObject encapsulates a subnetwork of other objects into a
single larger object with its own inputs and outputs.

86 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

running in parallel with their host threads in their parent
contexts.

UserObjects can be secured such that the user of the de\ice
can access only the panel and not the internals. In this form
the UserObject is almost indistinguishable from any primitive
device. This capability allows developers to create arbitrary
devices that can be archived in a libran,- for later access by
users, who can treat these devices as true primitives in their
application.

Threads
Devices that are connected to each other within the same
context form a single thread of execution. One of the in
herent advantages of dataflow programming is the ability to
support multiple independent threads of execution with
relative ease (see Fig. 8). This becomes particularly useful
when interacting with the rest of the world, since indepen
dent monitoring operations ("Has that message arrived
yet?") can proceed in parallel with related operations. In
typical 3GLs such operations require elaborate schemes for
enabling interrupts and related interrupt service routines.
Most who have dealt with such code as inline text can attest
to the difficulty of maintaining that code because of the diffi
culty of easily recreating the relationship between parallel
operations once the code has been written.

Several devices were developed especially for thread-related
activities. One of these is the Exit Thread device, which termi
nates all execution for devices on that same thread when
encountered. Another is the Exit UserObject device, which ter
minates all execution on all threads within the context in
which it is encountered.

Certain devices have the ability to elevate a thread's priority
above the base level to guarantee that thread all execution
cycles until completion. One such device is the Wait For SRQ
device (SRQ = service request), which watches a specified
hardware I/O bus in anticipation of a service request. If and
when such a request is detected, this device automatically
elevates the priority of the subthread attached to its output
so that all devices connected to that subthread will execute
before devices on any other thread (within this context or
any other context) until that subthread completes.

Virtual Context

Fig. 8. Any context (e.g., a UserObject) can contain one or more
threads, each of which executes independently of all others within
that context.

Fig. 9. Objects A and B and the XV display will execute 10 times
each at side) time as the iterator fires its only data output (right side)
10 times before firing its sequence output (bottom). The data from
the output of X is reused for the last 9 of the 10 executions of A
(active data rule).

Although it is not specifically thread related, a similar capa
bility exists for exception service. At the time an exception
is raised (e.g., an error occurs), all other devices on all other
threads are suspended until an exception handler is found
(discussed later).

Propagation: Flow of Execution
From an external point of view, the determination of which
devices can execute is a simple problem of finding out
which devices have had all of their inputs updated. From an
internal point of view, the problem is a bit more difficult. To
prevent infinite feedback the general rule for dataflow pro
grams is that each device can execute only once per activa
tion of the context in which the device resides. On the other
hand, it was felt from our earliest prototypes that having
iteration occur within some subgroup of devices in a con
text was superior to dropping down into a subcontext multi
ple times to accomplish the same thing, especially for
nested iteration.

Thus we were faced with the problem of allowing groups of
devices to execute multiple times within a single activation
of a context. Identification of these devices could only occur
at run time as they appeared on the subthread hosted by the
primary output of an iterator. To deal with this we devel
oped the virtual context, which is defined not by the user
but by the system (see Fig. 9). At run time, the devices that
are executed on the subthread hosted by an iterator are re
membered. Then, just before the next firing of the iterator
(since an iterator generally fires its output more than once
for each execution of that iterator), the devices in this
virtual context are selectively deactivated separately from
the other devices in the context. This allows them to be re-
executed when the iterator fires again by the normal rules of
propagation.

One other side effect of such iteration is that any data being
supplied to a device within the virtual context by a device
that is outside that virtual context is going to be delivered
only once to the device within the virtual context. Thus new
data is supplied to the inputs as required on the first itera
tion, but on all subsequent iterations no new data arrives.
One could solve this by using a special intermediary
Sample&Hold device, but a simple extension to the rules of
propagation turned out to be much easier. The extension,

October 1992 Hewlett-Packard Journal 87

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. output The special error output will fire in lieu of the data output if
any error is encountered while evaluating the formula. The value
posted at the error output is the error code number. This allows the
user to decide how to handle the situation.

known as the "active data rule," says that data from any ac
tive but of a device that is currently active (executed, but
not yet deactivated) can be reused. This has essentially the
same effect as the Sample&Hold but is much less error-prone.

The goal in all of this is to create a scheme of execution that
does not require the user to specify a sequence of execution
with explicit device-by-device triggering as is common in the
world of digital design. In addition, we wanted execution to
proceed as if the entire network were running on a multipro
cessor architecture with true parallelism. On a typical uni
processor machine only one primitive device is actually
drawing cycles from the processor at any one instant, but
the overall effect is as if all devices both within the same con
text level and across other levels of the network hierarchy
are running in parallel.

Asynchronous Operations
For some devices we found a need to invoke certain opera
tions programmatically that were peripheral to the general
operation of the device, such as AutoScale or Clear for an XY
graph. While the primary function of the graph is to con
struct a graph from the data present at the synchronous data
inputs, operations such as AutoScale could happen at any
time. A different class of inputs that were not incorporated
into the general scheme of propagation was needed to initi
ate these asynchronous operations. Thus we developed the
control input, which when updated at run time will perform
its assigned function within the associated device regardless
of the state of any other input on the device.

Exception Management
Exception (error) management could have been approached
from a number of different points of view, but it proved most
effective to implement a strategy based on an optional out
put that fires if and only if an untrapped exception is raised
from within the scope of that device (Fig. 10). For primitive
devices this allows the user to trap common errors such as
division by zero and deal with possibly errant input data
accordingly. In each case a number (an error code) is fired
from the error pin and can be used by the ensuing devices to
determine just which error has occurred. If the decision is
not to handle the error locally, the error can be propagated
upward with the Escape device, either as the same error that
could not be handled locally or as a new user-defined code
and message text, which may be more informative to the
handler that eventually owns the exception.

Hierarchical exception handling is possible because an error
pin can be added to any context object (UserObject) to trap
errors that have occurred within its scope and that have not
been serviced by any other interior handler. If the exception
pops all the way to the root context without being serviced,
it generates a dialog box informing the user of the condition
and stops execution of the model. To enable the user to lo
cate the exception source, the entire chain of nested devices
is highlighted with a red outline from the root context down
to the primitive device that last raised the exception.

Acknowledgments
Much of the conceptual framework for HP VEE in the early
stages came from lengthy discussions with John Uebbing at
HP Labs in Palo Alto. His insights and questions contributed
significantly to many elements of the underlying structure
which eventually matured into the HP VEE product. John's
vision and imagination were invaluable. I would also like to
thank several members of the design and test teams whose
continued feedback concerning the functional aspects of the
product proved equally invaluable: Sue Wolber, Randy Bailey,
Ken Colasuonno, Bill Heinzman, John Friemen, and Jerry
Schneider. Finally, I would like to thank David Palermo who
in his position as lab manager provided the resources and
direction to see this project make it from the first conceptual
sketches to the real world. No project of this nature can
succeed without such a sponsor.

88 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

A Performance Monitoring System for
Digital Telecommunications Networks
This 2, collects CCITT G.821 performance statistics on CEPT 2, 8, 34,
and 140-Mbit/s data streams and alarm data on network elements. A
demux data permits monitoring of tributary streams within a data
stream. Data is collected nonintrusively by peripheral units, which are
modular VXIbus systems.

by Giovanni Nieddu, Fernando M. Secco, and Alberto Vallerini

The HP Model E3560 digital performance monitoring and
remote test system is designed for surveillance of the quality
of a digital telecommunications network and for collecting
alarms from network elements, following the guidelines of
CCITT Recommendation G.821. The HP E3560 provides the
customer with well-defined performance parameters that
tell how the network is doing on a statistical basis, and
whether a failure has occurred in a network element.

The actual network monitoring is performed by devices
called peripheral units, which continuously monitor the
telecom links nonintrusively. The peripheral units scan the
PCM streams at the four main bit rates in the European
(CEPT) hierarchy (2, 8, 34, and 140 Mbits/s), looking for
alarms and binary errors, and computing the G.821
performance parameters.

Data produced by the peripheral units is collected by a first-
level processor, an HP 9000 Series 400 workstation, which
stores the data in a relational database. The first-level proces
sor also provides for configuration of the peripheral devices
and presents the retrieved data and alarms to the user.

Digital Network Quality
Digital networks have had and are still having spectacular
growth, constantly adding newer and more sophisticated ser
vices to customers. In many European countries, it is now
possible for a customer to lease 2-Mbit/s digital lines to build
a private network. It is very common to lease 64-kbit/s perma
nent or packet circuits. In the most industrialized countries,
practically every large company has its own private network.

Network customers demand and pay for a specified quality
of service. The CCITT in its Recommendation G.821 starts
with the definition of network quality parameters (see defi
nitions below) and gives end-to-end quality objectives (see
Table I) for a 27,500-km, 64-kbifs circuit called the Hypotheti
cal Reference Connection (HRX). Fig.l shows the functional
representation of the HRX.

The following quality parameters are defined in G.821:
Errored second (ES): a second with at least one error
Severely errored second (SES): a second with a bit error
rate (BER) worse than 10'3

27,500 km

1,250km 25,000 km 1,250km

Fig. 1. defined representation of the Hypothetical Reference Connection (HRX) defined in CCITT Recommendation G.821. LE = local
exchange. center. = primary center. SC = secondary center. TC = tertiary center. ISC = international switching center.

()i loher 1992 I lewlett-Packard Journal 89
© Copr. 1949-1998 Hewlett-Packard Co.

> Degraded minute (DM): a collection of 60 non-SES with a
BER worse than 10'6

> Unavailable seconds (UAS): a period that starts when at
least 10 consecutive SES are counted and ends when 10
consecutive non-SES are seen. UAS includes the first 10
SES and excludes the last 10 non-SES.

CCITT Recommendation M.550 (M-series recommendations
are addressed to service management) tells service provid
ers how the objectives of Table I are to be allocated inside
the transmission network. The end-to-end objectives of
Table I are partitioned according to the quality classification
of the circuit (high, medium, or local grade). Table II gives
the percentage of the objectives that must be allocated for
each circuit classification. For the local-grade and medium-
grade circuit classifications, the allocated percentage of the
objectives is independent of the circuit length, while for high-
grade must the allocated percentage (40% in Table II) must
be scaled according to the length of the circuit. For example,
for a high-grade circuit 2,500 km long, the allocated percent
age of the objectives will be 40 x (2,500/25,000) = 4%. Annex
D of G.821 suggests a method for computing all parameters
originally defined at 64 kbits/s for higher bit rates, by
measuring errors at the higher rates.

T a b l e I
E n d - t o - E n d Q u a l i t y O b j e c t i v e s

Q u a l i t y P a r a m e t e r s O b j e c t i v e
(M a x i m u m P e r c e n t a g e

o f T ime)

D e g r a d e d M i n u t e s (D M) 1 0

S e v e r e l y E r r o r e d S e c o n d s (S E S) 0 . 2

E r r o r e d S e c o n d s (E S) 8

T a b l e I I
A l l o c a t i o n o f O b j e c t i v e s

H R X C i r c u i t Q u a l i t y C l a s s i f i c a t i o n P e r c e n t a g e o f
O b j e c t i v e

15

15

40

Local (each end)

Medium (each end)

High

As an example of the allocation of objectives, suppose that
the path whose quality parameters are to be measured starts
at a local exchange, ends at a secondary center, and passes
through a high-grade circuit 1,500 km long. This means that
the sum of a local-grade circuit, two medium-grade circuits,
and a high-grade circuit must be allocated. According to
Table II, the allocated percentage is 15 + 2 x 15 + 40 x
(1,500/25,000) = 47.4%. This leads to the following path ob
jectives (RPO stands for reference performance objective):

RPO(DM) = 10% x 47.4% = 4.740%
RPO(ES) = 8% x 47.4% = 3.792%
RPO(SES) = 0.2% x 47.4% = 0.095%.

TMN Architecture
The architecture of the HP E3560 follows as closely as
possible the architecture proposed in Recommendation
M.30 of the CCITT Blue Book Series. M.30, which is better

known as TMN (Telecommunications Management Network),
establishes the building blocks and data links that should be
employed in the design of a network whose aim is the man
agement of the telecomm network. In Recommendation
M.30, four blocks are identified (see Fig. 2):
Network elements (NE) represent the devices that make up
the telecom network. It is assumed that an NE is "intelli
gent" enough to have the possibility of generating and trans
mitting some kind of information useful for network man
agement. All NEs produce for external use some sort of
internal alarms, both urgent and nonurgent. These are rep
resentative of internal faults. Urgent alarms indicate a need
for immediate maintenance. Alarms can be displayed in a
centralized operation and maintenance center to help net
work personnel understand where faults have occurred and
to minimize the need for manned offices.
Operations systems (OS) are the blocks where the network
management takes place. They can be thought of as com
puters that receive a large amount of data from the network
and provide for its elaboration and for the generation of
data useful for management purposes.
Mediation devices (MD) provide the links between the NEs
and the OSs. Their main functions are protocol conversion,
information conversion and storage, data buffering, and fil
tering. These blocks can be absent if the NEs are powerful
enough to manage the data link with the OSs.

Recommendation M.30 has recently been renamed M.3010.

Fig. 2. Simplified physical architecture of the Telecommunications
Management Network (TMN) specified in CCITT Recommendation
M.30 (now M.3010). NE = network element. OS = operations sys
tems. MD = mediation devices. WS = workstations. DCN = digital
communications network. LCN = local communications network. QA
= Q adapter, a protocol converter. Qx and Q3 are types of data link
protocol stacks. F, X, and M are different types of interfaces.

90 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

RS-485Bus

RS-485 Bus
Remote Site B

Fig. 3. HP E3560 digital performance monitoring system architec
ture. PU = peripheral unit. M = modem. DCN = digital communica
tions network. The HP E3560 architecture is modeled on the TMN
architecture shown in Fig. 2. The first-level processor is an HP 9000
Series 400 workstation.

> Workstations (WS) display data elaborated by the OSs in a
form understandable by humans.

These blocks and the functions they perform must not nec
essarily be thought of as separate entities. An NE can have
functions typical of an MD, and an MD can have functions
typical of an OS or a WS.

HP E3560 Architecture
In the HP E3560 architecture, which is shown in Fig. 3, the
peripheral units play the role of NEs. They are not actually
part of the telecomm network, since they don't provide for
the transfer of voice or data, but nonetheless they are a
source of management information.

The first-level processor acts as a mediation device (MD)
with OS functions. It collects data from the peripheral units
and stores it, and it provides basic processing aimed at the
generation of performance alarms following CCITT Recom
mendation M.550. Finally, it is an entry point into the system
through the window-based human interface.

The links between the various blocks of the architecture are
particular OSI stacks named Qx and Q3. Qx is the link used
to transfer data between the peripheral units and the first-
level processor. Q3 is a complete seven-layer ISO (Interna
tional Standards Organization) OSI (Open Systems Intercon
nection) stack, based on X.25 or Ethernet protocol in its

three lower layers. Q3 is defined by CCITT Recommendations
Q.961 and Q.962.

Qx. defined in Recommendation G.773. is also called the
"short stack," since not all of the OSI layers are present. Two
profiles or stack configurations, called Al and A2, have been
proposed by the CCITT. Both are missing OSI layers 4. 5. and
6. which are replaced by some mapping functions that act as
a sort of "short circuit" between layer 7 service requests and
layer 3 services. Both stacks have the same layer 7 compo
nents definition: CMISE (ISO 9595/9596. CCITT X.710/711),
ROSE (CCITT X.219-X.229), and ACSE (CCITT X.217-X.227).
The mapping functions provide some basic layer 6 services.
such as the encoding and decoding functions, according to
the basic encoding rules of CCITT X.209.

The two profiles differ in layers 1, 2, and 3, as shown in Fig. 4.
Profile Al, which is used in the HP E3560, uses RS-485 as
the physical layer, HDLC-NRM as layer 2, and ISO 8473 as
layer 3 (of the possible three subsets of ISO 8473, the HP
E3560 implements the so-called "NULL IP"). Profile A2 is
based on an Ethernet link.

In the HP E3560, Qx/Al constitutes the data link between the
first-level processor and the peripheral units, or in TMN ter
minology, Qx/Al is the LCN (local communication network).
Since the network topology is point-to-multipoint, the rela
tionship between the first-level processor and the peripheral
units is of a master-slave type. The peripheral units are con
tinuously polled by the first-level processor, which acts as a
primary station. Only when a peripheral unit receives the
polling request (or the RR frame in HDLC terminology) is it
allowed to send one packet of data to the first-level proces
sor. Packet length is limited to 256 bytes (one octet in the
HDLC frame) and packet segmentation is not allowed.

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Network Layer

I S O 8 4 7 3 I S 0 8 4 7 3 / A D 3

Data Link Layer

ISO 3309 ISO 7809 ISO 4335

Profile A1

Data Link Layer

ISO 8802.2+DAD2 ISO 8802.3

Physical Layer

Not Specif ied

Profile A2

Fig. 4. The Qx data link protocol stack as defined in CCITT Recom
mendation G.773. Two profiles, Al and A2, are permitted. Profile Al,
which is used in the HP E3560, uses RS-485 as the physical layer.

October 1992 Hewlett-Packard Journal 91

© Copr. 1949-1998 Hewlett-Packard Co.

The number of peripheral units that can be handled by a
first-level processor is limited by the addressing capability
of the HDLC protocol, which, as stated in G.773, is 254. One
byte is used to address a secondary station, and address
values OOh and FFh are reserved for the "no station" and
"all stations (broadcast)" addresses. On the other hand, the
number of peripheral units that can be physically connected
to a first-level processor is at most 30 because of charge
limitations of the RS-485 bus.

Remote Links
In developing the HP E3560, another protocol limitation had
to be overcome: as implied by its name, the LCN cannot
span more than a few hundred meters, so the LCN is useless
for connecting remote peripherals to the first-level proces
sor. For cost reasons, it is unacceptable to place a first-level
processor at each site where a peripheral unit is located, so
a solution involving modems and leased lines had to be
found.

The HP E3560 solution for remote links takes the form of
two additional peripheral unit boards: the communication
board and the communication controller board. The commu
nication controller can drive up to eight communication
boards, each of which has two RS-232 ports capable of driv
ing an external modem. One of the communication boards is
connected to the RS-485 bus. Installed in a local peripheral
unit, a set of these boards acts as a router between the main
bus and the remote peripheral units, as shown in Fig. 3. One
router section can drive up to 16 remote peripheral units or
up to 16 remote addresses. The distribution of the addresses
among the RS-232 ports is customer-defined, ranging from
16 addresses driven by a single port (using only one commu
nication board) to 16 addresses, each driven by a single port
(using eight communication boards).

At the remote site, the peripheral unit physically connected
to the modem (called the remote master peripheral unit)
acts as a repeater, locally regenerating the RS-485 bus.
Throughout the remote links, the protocol from layer 2 up is
still Qx, so what we have obtained is the extension of the
protocol at the expense of redefining the physical layer for
only part of the transmission path.

First-Level Processor Interface
On the first-level processor side of the RS-485 bus, an
HP RTI (real-time interface) card interfaces the processor to
the peripheral units. This board interfaces to the I/O bus of
the HP 9000 Series 400 workstation and accepts inputs from
SBX boards purchased from HP or other vendors, t No out
put interface is provided. From a protocol point of view, the
first-level processor's Qx stack is split into two parts: layers
1 and 2 are implemented in the RTI card, while the remain
ing part runs in the HP-UX environment. In this way, the
stack section most affected by typical real-time problems
runs on a dedicated processor with a real-time multitasking
kernel (the HP RTI card uses the pSOS+â„¢ operating sys
tem). Communication between the two parts is handled by
the HP-UX device driver mechanism.

t SBX SBX Bus extension] is an industry-standard bus. The SBX boards used in the HP
E3560 fit into the SBX connector on the HP RTI card and have serial ports for RS-485 commu
nication. The HP 94185A 2-channel serial SBX card is used in the HP E3560

First-Level Processor
The first-level processor's main task is the collection of data
produced by the monitoring activities of the peripheral units.
This data, divided into the two classes of performance data
and alarm data, is processed and stored in a relational SQL
database for further analysis and historical tracing. Alarms
are displayed on the screen to alert maintenance personnel.
To help the operator in problem solving, other software is
provided for reporting and fault localization exploiting the
demux capabilities available in the peripheral units. The
first-level processor can have a Q3 connection to a second-
level processor or an existing OS.

The other important first-level processor function is periph
eral unit management. Through a simple-to-use human inter
face based on X Windows, it is possible to set up the boards
in the peripheral units and selectively start and stop the
monitoring operations.

In addition to the normal software environment provided by
HP 9000 Series 400 workstations (HP-UX and X Windows),
the first-level processor's software is based on the HP Open-
View platform. 1 The services offered by HP OpenView are
exploited both from the programmer's side (easy and well-
defined communication between tasks, object-oriented ap
proach, etc.) and from the user's side (object management
through the use of maps).

Peripheral Units
The HP E3560 peripheral unit can be considered a network
element (NE) whose main purpose is to collect status and
network quality parameters from other NEs. Alarms are
collected directly and indirectly from the NEs and sent to
the first-level processor to be processed. Quality parameters
are collected indirectly from the NEs, processed according
to CCITT G.821, and sent to the first-level processor.

The peripheral unit is designed to be inserted both function
ally and structurally into the telecomm environment, specifi
cally in the digital transmission area. The digital transmis
sion area is the part of a telecomm system that deals with
digital information transport by means of equipment such as
multiplexers, line terminals, regenerators, add/drop multi
plexers, cross connections, digital radio relays, and so on.
This area and the digital switching area are the building
blocks of a digital network. It is reasonable to say that most
of today's telecomm equipment is digital and much of it uses
fiber optic media to transport signals all over the world.

Peripheral Unit Description
The peripheral unit is built to solve the problem of alarm
collection and analysis for a large variety of alarm types.
Different physical interfaces are available, including current
loop, voltage sensing, and open or closed contact sensing.

Data streams from 2 Mbits/s up to 140 Mbits/s can be ana
lyzed both intrusively and nonintrusively. This is achieved
by means of high-impedance probes connected to the data
streams at protected monitoring points according to CCITT
G.772, or by taking the signal directly from standard moni
toring points that are sometimes already present in the net
work central office. Typical network alarms collected include
loss of signal, AIS (alarm indication signal), loss of frame
alignment, and so on. It is also possible to count events
coming, for example, from radio relay equipment that flags

92 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

block parity errors or forward error correction (FEC) code
interventions. These events are also processed and used to
compute the G.821 parameters.

The peripheral unit is modular for flexible configuration.
Many different types of boards can be mixed in the periph
eral unit cardcage according to the needs of the application.
The boards and backplane conform to the VXIbus standard.2
and each board is a complete instrument. Thus, expanding
existing measurement capabilities is simply a matter of du
plicating existing boards, while adding new functionalities is
a matter of installing new boards and updating the software.
Up to ten application boards and up to three communication
controller boards can be installed in each peripheral unit.
The peripheral unit can easily be installed in a central office
thanks to its standard 19-inch width and relatively small
depth (11.8 in). There are two power supply types, one for
de-powered central offices (^48V, -60V) and one for ac-
powered offices (lOOVac, 240Vac).

The peripheral units are interconnected by an RS-485 bus,
which is the physical layer of the TMN Qx protocol. Up to
30 peripheral units can be physically inserted in the same
RS-485 bus. This bus is shared by the first-level processor,
which is the primary station and polls the peripheral units
(secondary stations). It is possible, using the dedicated com
munication boards described earlier, to accommodate more
than 30 peripheral units. The same boards can also be used
to connect remote peripheral units through modems on
leased lines or service channels.

Fig. 5 gives an overview of the cardcage. The cardcage can
house up to 15 B-size VXIbus or VMEbus boards. Thirteen
slots have all of the VXIbus lines and form a VXIbus subsys
tem, while the last two slots have only the VMEbus lines.
According to the VXIbus standard, the first slot is for the
slot 0 board, which together with the processor board is the
resource manager of the cardcage. Slot 0 has four peripheral
unit communication ports called Jl, J2, J3, and J4. Jl is
RS-485, J3 is either RS-232 or RS-485, J4 is RS-232, and J2 is

VME Boards

VXI Boards

Cable
M a n a g e m e n t

System LEDs
O n / O f f S w i t c h S y s t e m F a n s

Fig. 5. HP Iv'i.r>60 peripheral unit cardcage organization.

a passive connector that can be paralleled with Jl or J3 and
acts as a tee connector for the communication bus. A local
maintenance terminal can be connected to J4 for local
management and maintenance.

A requirement for the cardcage is that not only the boards,
but also the power supply and the fans, must be easily re
placed. This is considered important for a telecomm NE
because it is common for all of the parts of a telecomm sys
tem to be easy replaceable. Another important feature of the
cardcage is cable management. In some configurations more
than 80 coaxial cables must be managed in the cardcage.

The power supply provides the following resources: +5V at
20A, +12V at 3A, -12V at 3A, -5.2V at 10A, and -2V at 6A. It
is also responsible for generating the VXIbus reset and
powerfail signals, and it can maintain its specified output
capacity for up to 20 ms of power line failure, permitting the
system to work without interruptions.

The peripheral unit meets the requirements of IEC 750 re
garding safety, CISPR 22 Class B for radiated emissions, and
HP environmental specifications (ETM Cl "Office").

Peripheral Unit Boards
The system is organized to house VXIbus or VMEbus boards.
All of the application boards are VXIbus register-based, B-size
boards. They use a common bus interface unit implemented
in an ASIC (application-specific integrated circuit). Every
board can run a self-test to determine its status according to
VXIbus is A useful feature is self-configuration, which is
implemented using the VXIbus M ODI D lines and the standard
registers provided in the VXIbus A16 address space. Every
board has its own address and a model code that represents
its functionality. This allows the processor that controls the
peripheral unit to determine the cardcage configuration and
any board's status automatically.

The system boards are the slot 0 board and the processor
board. The slot 0 board is required by the VXIbus standard
to provide common resources to VXIbus subsystem slots 1
through 12. Slot 0 also provides the system trigger, which is
used to synchronize the measurements, and basic system
resources such as the system clock and the bus arbiter. The
processor board is a VMEbus B-size board and is responsi
ble for raw data collection from the application boards.
Alarms are stored in local memory waiting to be polled by
the first-level processor, while the raw data is processed to
obtain the G.821 parameters which are then stored until
collected by the first-level processor. Up to 80 digital
streams (this is the case for ten 2-Mbit/s boards), or up to
160 alarm points (this is the case for ten alarm boards) can
be processed in a peripheral unit. In the case of a loss of
communications between the first-level processor and the
peripheral units, all of the G.821 records can be stored for
up to 12 hours; each monitoring point is allocated a buffer
for 50 records, a record consisting of type of alarm, start
time, and stop time. The processor software can be updated
using a DOS-based personal computer connected to the J4
RS-232 connector.

The communication controller and communication boards
are used to extend the bus to remote sites. Any communica
tion board can drive two modems at a maximum speed of

October 1992 Hewlett-Packard Journal 93
© Copr. 1949-1998 Hewlett-Packard Co.

9600 bits/s. The communication controller is basically a pro
cessor board with specialized communication software and
can control up to 16 remote peripheral units.

HP E3560 application-specific boards include a 140-Mbit/s
monitor board, a 34-Mbit/s monitor board, an 8-Mbit/s moni
tor board, a 2-Mbit/s monitor board, a counter board, and an
alarm board. The monitor boards can recover a CCITT G.703
signal. They can analyze the standard CCITT G.702 hierar
chy starting with 2 Mbits/s (2048 kbits/s) or a pseudorandom
(PRBS) signal according to CCITT O.151. The 2-Mbit/s moni
tor board analyzes up to eight independent data streams.
Measurements can be made using code violations, frame
alignment errors, CRC-4 errors, or PRBS errors. The 8-Mbit/s,
34-Mbit/s, and 140-Mbit/s monitor boards can analyze a
single data stream. They measure code violation errors,
frame alignment errors, or PRBS errors. The counter board
can count events at a maximum speed of 1 MHz. Its eight
independent inputs can accept signals from -5V to +5V and
its maximum sensitivity is 100 mV. The alarm board has 16
independent inputs. When an input is set for high imped
ance, it can collect events from -60V to +60V, and maximum
sensitivity is IV. It can also be set to measure open or closed
contacts or current loops.

Any of the monitor boards can demultiplex a tributary data
stream inside the data stream being processed and send it to
the VXIbus local bus lines. Any board in the system can sink
and/or bypass these lines to the next board. This means that
a group of boards, say one 34-Mbit/s, one 8-Mbit/s, and one
2-Mbit/s, can act as shared demultiplexers for the other
monitoring boards, which can send these boards their
signals to be demultiplexed.

Two special application boards are also available. These are
basically the standard 8-Mbit/s and 34-Mbit/s monitor boards
without the G.703 interface. They perform the demux func
tion while analyzing the streams coming from the local bus.
This can be economically convenient when a demux feature
is shared among many monitored streams.

Another common resource is the scanner board, which
contains two 4: 1 analog multiplexers. The high bandwidth
of this board allows the multiplexing of signals up to 140
Mbits/s. Up to three multiplexers can be cascaded. A scan
ner board can be used to scan a group of digital data
streams, connecting one at a time to a monitor board. This
can lower the cost per data stream but has the disadvantage
that no data stream is monitored continuously.

HP OpenView Windows
(Operator Interface)

Fig. on network software. software architecture. The software is based on the HP OpenView network management software.

94 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

HP E3560 Software
The HP E3560 software is based on HP Open View.1 as
shown in Fig. 6. The applications and managers that form
the software environment are divided into four packages:

â€¢ Base software
â€¢ Communication software
â€¢ Presentation software
â€¢ Threshold manager software.

Base and Communication Software
The base software lets the user manage the peripheral units
by acting on the manager map (Fig. 7). This is actually a set
of maps, each exposing a particular level of detail in the
system architecture, from a high-level view (peripheral unit
level) down to the board level and the individual monitoring
channels inside the boards. Another set of maps called the
user map is available for surveillance (see "Presentation
Software," page 97).

By selecting an object with the mouse and using the ap
propriate menus, the system manager can set up the periph
eral units and start and stop the monitoring activities. This
feature is available both on the peripheral unit level (a sort
of big switch that turns on and off the monitoring capabili
ties of an entire peripheral unit) and on the single-channel
level. Thus it is possible to enable or disable the monitoring
of a single data stream or alarm input.

The part of the user interface not directly handled by HP
OpenView is managed by the ConfigA application, which
translates user requests into the appropriate primitives and
posts them to the HP OpenView communication infrastruc
ture to be sent outside the workstation using the Qx proto
cols. Since this is not one of HP OpenView's native stacks,
the task is performed by a proxy manager (which is part of
the communication software). The proxy manager takes

care of the translation between the HP OpenView primitives
and the Qx primitives. Furthermore, the proxy manager
manages all associations with the peripheral units and en
sures the correct addressing of each outgoing request. The
proxy manager returns incoming responses to the applica
tion or manager waiting for them, and sends event report
indications to the event management server (see below).

The proxy manager also manages data link faults. The OSI
layer 2 protocol continuously polls the peripheral units and
can detect any disconnection resulting from line breakage,
peripheral unit failure, or some other cause. In this case, it
issues a DL-DISCONNECT request towards the OSI stack's up
per layers. The layer 7 service element responsible for asso
ciations forwards this request to the proxy manager as a
PROVIDER-ABORT indication. The proxy manager translates
this into a format understandable by HP OpenView by issu
ing a particular event report indication to the fault manager,
a part of the base software not shown in Fig. 6, which signals
the fault by changing the object's color on the network map.

The fault manager is one of three managers that handle in
coming events. The other two are the alarm manager and
the statistics manager, which receive the alarms and the
G.821 data, respectively, from the peripheral units and store
it in the database. These managers use the services of the
event management server. Each manager creates a filter
which is used by the event management server to route the
various events to the managers that are waiting for them.

Since data handled by these managers requires a large
amount of storage (customers typically ask for 1 to 2 years'
storage), it was deemed better not to use the database
embedded in HP OpenView, but to provide instead an SQL
database, which is also useful for report generation. Con
figuration information is also stored in the SQL database.

Fig. 7. Ill' IviufiO manager map
Mop level).

October 1992 Hewlett-Packard Journal 95
© Copr. 1949-1998 Hewlett-Packard Co.

It was a design choice that all information pertaining to the
peripheral unit is kept in the peripheral unit itself. The first-
level the stores only logical information related to the
peripheral unit (e.g., the data streams' names and creation
dates) that doesn't correspond to any physical attribute of
the device.

The alarm manager also changes the status and therefore
the map color of the affected object. The HP E3560 uses the
four colors allowed by HP OpenView. Each color is associ
ated with a particular status of the affected object. The four
basic status conditions are:

â€¢ Unknown. This status means that the object has not been
created yet. It is known by the first-level processor, but not
by the peripheral unit that contains it.

â€¢ Normal. The object gets this status after a successful cre
ation, that is, after a create request has been issued to the
peripheral unit and has been acknowledged by it.

1 Warning. The object gets this status when an alarm indica
tion has been received. When the alarm is turned off, the
object's status changes back to normal.

â€¢ Critical. The object gets this status when a data link fault
occurs, that is, when it is no longer possible for the first-
level processor to act upon the object.

Database Management
Database management is part of the base software. It is han
dled by the ConfigA application and the alarm and statistics
managers. The database structures consist of three main
tables:
Configuration tables store data regarding peripheral units
and monitored data streams. As mentioned above, only log
ical parameters are stored in the first-level processor, such
as the data stream name, its creation and disconnection
dates, and the quality parameters of the stream (see
"Threshold Manager Software" below).

1 Alarm tables store alarm source, type, begin time, and end
time.

i Performance tables store performance data coming from
the peripheral unit. Each row of the table stores a record
containing the error counts (ES, SES, DM, UAS) and three
bit error rate indicators computed by the peripheral unit in
slightly different ways.

The way in which performance data is managed is critical to
the operation of the system. Elementary data coming from
the peripheral units occupies a lot of disk space. With some
hundred streams being monitored, disk space can be filled
in a few months. As a compromise between data storage and
disk space, an aggregation technique was developed to
maintain data for a longer period at the price of reduced
data granularity.

The elementary records are kept in the database for a period
of time Tl (expressed in days), which can be defined by the
user during the installation of the system. Each day, a back
ground process combines the elementary records into a
single daily record. For G.821 parameters (ES, SES, etc.)
this is done by simply summing all of the stored values. For
BER parameters, it is done by averaging all of the stored
values. After Tl days, the older elementary records are re
moved from the database. Storing the daily records before
time Tl speeds up daily report generation at the expense of
a small amount of extra storage.

The advantage of this operation to the user is a reduction of
the disk space needed for the database. The disadvantage
lies in the loss of resolution resulting from the aggregation
process: the older data cannot be viewed with 15-minute
resolution, but only with 1-day resolution.

The daily records are kept in the database for a period of
time T2. At the end of each month, a second aggregation

D i a g n o s e C o n t r o l C o n f i a

Fig. 8. Hourly G.821 statistical
report. ES, SES, DM, UAS, and
BER are defined on page 89. EFS
= error-free second. LES = local
errored second. AV_ER and
AT_ER are bit error rates (BER)
computed in different ways.

96 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

takes place, collapsing the daily records of the oldest month
into a single monthly record. After T2 months, the oldest
daily records are removed from the database.

Finally, after a period of time T3. the oldest records are
deleted from the database.

Tl. T2. and T3 can be defined during system installation, but
it must be realized that their values have different impacts
on disk space. Elementary records have the highest storage
requirements, while daily and monthly records play only a
secondary role. Therefore, a higher value of Tl means re
ports with higher resolution for a longer time, but it also
means more disk space and cost.

Presentat ion Software
The presentation software is implemented using the ReportA
application. Reports are divided into two families: statistical
and alarm reports, which show performance and alarm data,
respectively. Performance data can be displayed in three
formats: hourly (Figs. 8 and 9), daily (Fig. 10), and monthly.
The hourly display shows data as it is stored in the database
(elementary data). The daily and monthly displays show
aggregated data. Various reporting options let the user make
reports on a single data stream or on a group of data
streams, showing absolute or percentage values. The user
can define thresholds for ES, SES, and DM and have the
report flag all records having one or more values over a
threshold. Optionally, the user can ask for a report displaying
only values that exceed system or user-defined thresholds.

The ReportA application user interface makes extensive use
of X Window panels and HP OpenView maps. The user's
selections are translated into SQL queries and the results are
formatted in a file and displayed. The file can also be printed.
The HP E3560 design philosophy allows system users, who
perform reporting activities, to make use of user maps.

These contain only objects such as data streams or alarm
inputs and are not cluttered with configuration objects
(peripheral units, boards, and so on), which are not pertinent
to the surveillance task.

Fig. 1 1 shows a typical alarm report.

Threshold Manager Software
The threshold manager software has the purpose of long-
term surveillance of the monitored data streams according
to CCITT Recommendation M.550.

Each data stream can be assigned quality parameters by the
operator. These consist of a quality classification (high,
medium, or low grade) and the type classification of the link
(path, section, or line section). These characteristics are
processed to produce a set of thresholds that mark the data
stream performance limits: the higher the declared quality of
the data stream, the lower the limits. The calculated thresh
olds also depend on another variable, the operational status
of the data stream, which can be declared as in service, out
of service, or repaired. The software automatically sets the
thresholds according to the operator's declarations.

Whenever a data stream is placed under threshold manager
control, its performance data (ES, SES, and DM values) is
periodically read from the database. The period, called the
step, can be defined by the user, from 15 minutes to 1 day.
The performance data is arcumulated in the threshold man
ager's private registers. This process continues for a user-
defined period of time called the reset period, ranging from
a minimum period, which is equal to the step, to a maximum
of one month. If during the reset period any one of the accu
mulated values crosses the calculated threshold, the thresh
old manager generates an alarm, which is displayed in the
same manner as the alarms coming from the peripheral units.

Fig. 9. Hourly G.821 statistical
histogram.

October li)<)2 Hewlett-Packard Journal 97
© Copr. 1949-1998 Hewlett-Packard Co.

Recommendation M. 550 classifies circuit performance as
normal, degraded, or unacceptable. This classification takes
the reference performance objective (RPO, defined earlier)
as its reference point and scales it by a factor depending on
the circuit type to determine the thresholds of degraded and
unacceptable performance. For a digital path like the one
used as an example at the beginning of this article, the scal
ing factor for the degraded performance threshold is 0.75.

Fig. 10. Daily G.821 statistical
report.

Thus, the performance of such a path is defined as degraded
(D) when one or more of the quality parameters ES, SES, or
DM crosses the corresponding threshold:

D ES = 0.75 x RPO(ES)
D SES = 0.75 x RPO(SES)
D DM = 0.75 x RPO(DM)

Fig. 11. Network stream alarms
report.

98 October 1992 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Demux Software
One of the most powerful capabilities of the HP E3560 pe
ripheral unit is the possibility of taking a data stream con
nected to the peripheral unit's front panel and extracting
one of its tributaries. The extracted data stream can be fed
to another monitoring board, which in turn can monitor and
recursively demultiplex the tributary. Thus, starting from a
140-Mbit/s data stream, one can demux down to the 2-Mbit/s
level.

This capability is exploited to give three different demux
modes: slow, medium, and fast demux (these features are
included in the base software).

Slow demux can be used to monitor a selected tributary con
tinuously. This is nothing more than what is normally done
with the monitoring boards, except that the controlled data
stream doesn't come from the transmission equipment or
the DDF (digital distribution frame), but is extracted from a
hierarchically higher data stream. All the operator has to do
is select a demux source, choose the Start Slow Demux option
in the Demux menu, and then, helped by a dialog box, ask for
the pattern that leads to the desired tributary. An M-ACTION
primitive is then sent to the peripheral unit, which locates
the required resources (mainly free monitoring channels)
and then communicates to the first-level processor the start
of the demux action, sending back the physical addresses of
the selected channels. These channels appear to the opera
tor as symbols on the map, which the operator is asked to
name to identify the selected tributaries during the demux
operations. It is also possible to assign a group name to the
whole demux chain (the set of streams that form the pat
terns) which makes it possible to extract the G.821 report
with a single query.

Fast and medium demux are fault localization tools: their
philosophy is the same as slow demux, but they are imple
mented slightly differently. The idea behind these operations
is to explore the "tributary tree" contained in a data stream
to find possible problems.

Fast demux starts from a selected data stream and scans the
tree down to the 2-Mbit/s level, reporting the status of each
tributary. If the status is not OK, the most severe alarm de
tected during the scanning is reported. This operation is
very quick and is automatically performed by the peripheral
unit. After about 10 seconds, the report is ready on the
screen.

Medium demux operates in the same way, but the time dedi
cated to each tributary can be chosen by the operator (from
1 to 60 seconds). Since this results in a longer operation, the
result is more accurate. The report also gives the BER
estimated during the observation of the tributary.

Acknowledgments
The HP E3560 is the result of the common efforts of many
engineers and managers who put together ideas, experi
ences, efforts, and enthusiasm. The authors wish to thank
all the people who, at different stages of the project, made
contributions. These include M. Verde and M. Ferrari for
product management, and G. Cattin and M. Mason for proj
ect management. Special thanks go to the R&D team, in par
ticular to: M. La Manna, R. Borghetto, T. Santi, F. Vendramin,
P. D'Emilio, P. Bottaro, S. Mingardo, A. Canella, M. Dal
Sasso, S. Tosato, G. Santi, A Pedron, C. Carrara, L. Vanuzzo,
F. Mallamo, R. Cappon, F. Brasola, M. Ongaro, P. Fasolato, R.
Ronzani, M. Ballotta, R. Silvestrini, G. Rosina, Mark
Smaczny, and John Spink.

References
1. Hewlett-Packard Journal, Vol. 41, no. 2, April 1990, pp. 51-91.
2. L.A. DesJardin, "VXIbus: A Standard for Test and Measurement
System April Hewlett-Packard Journal, Vol. 43, no. 2, April
1992, pp. 6-14.
HP-UX Â¡s based on and is compatible with UNIX System Laboratories' UNIX* operating system.
It also specifications. with X/Open's XPG3, POSIX 1003.1 and SVID2 interface specifications.
UNIX in other registered trademark of UNIX System Laboratories Inc. in the U.S.A. and other
countries.
X/Open is a trademark of X/Open Company Limited in the UK and other countries.

pSOS is a U.S. trademark of Software Components Group, Inc.

October 1992 Hewlett-Packard Journal 99
© Copr. 1949-1998 Hewlett-Packard Co.

Authors
October 1992

HP 4980 Network Adv isor

E d m u n d G . M o o r e

A graduate of the University
of California at Berkeley in
1979 with a BS degree in
electrical engineering and
computer science, Ed Moore
joined HP's Colorado Telecom
Division that same year. He
was a program and section
manager for the HP 4980

Network Advisor project and is now the quality man
ager for the division. In the past he has worked as
either a development engineer or a project manager
for other HP 4900 Series protocol analyzers. He is a
member of the IEEE and his professional interests are
computer networking and network protocols. Ed was
born in Augusta, Georgia, is married, and has three
children. He enjoys rafting and racquetball in his
spare time.

1 1 E m b e d d i n g A r t i f i c i a l I n t e l l i g e n c e

S c o t t G o d l e w

Scott Godlew was the
technical lead for the Fault
Finder component of the HP
4980 Network Advisor. He is
now a member of the Open-
View development team at
HP's Colorado Networks
Division. He received his BS
degree in computer science

from Michigan Technological University in 1984. He
joined HP's Colorado Telecom Division (CTDI that
same year. At CTD he worked on WAN and LAN pro
tocol analyzer development. He recently received his
MS degree in intelligent systems from National Tech
nological University. He grew up in Michigan, but
now claims Colorado as his home where he enjoys
skiing, camping, and exploring the colorful history of
the mineral-rich Colorado mountains.

R o d U n v e r r i c h

Software engineer Rod
Unverrich joined HP's Tele
com Division in 1989. He
received a BS degree in
electrical engineering and
computer science from the
University of Wisconsin at
Madison in 1986, and an MS
degree in computer science

from National Technological University in 1991. For
the HP 4980 Network Advisor project he worked as
the technical lead engineer for the token ring Fault
Finder. He also worked as an application engineer for
the Network Advisor. Before joining HP he was a
software engineer with IBM working on real-time
software development for a data switching product.
He is listed as an inventor for three pending patents
resulting from his work on the Network Advisor. He
is active in a local school program that instructs
teachers and students about basic electronics. Born
in Waukesha, Wisconsin, he is married and awaiting
the arrival of his first child. He enjoys running,
weightlifting, and hiking in his spare time.

S t e p h e n W i t t

Project manager Steve Witt
joined HP's General Systems
Division (GSD) in 1979 after
receiving his BSEE degree
from Michigan Technological
University. He joined HP's
Colorado Telecom Division
(CTD) in 1980. AT GSD he
worked on the I/O subsystem

for the HP 300 business computer and at CTD he has
worked on the HP 4953A and HP 4955A WAN proto
col analyzers and X.21 state simulators. He was the
project manager for the token ring Network Advisor
and the token ring and Ethernet versions of the Fault
Finder. He is a member of the IEEE and his profes
sional interests include computer networks and local
area networks. Born in Ottawa, Canada, he is married
and has two children. He is active in his church and
enjoys reading, swimming, hiking, photography, and
astronomy. In his spare time he is building his own
telescope.

2 2 H P 4 9 8 0 U s e r I n t e r f a c e

T h o m a s A . D o u m a s

Tom Doumas is a project
manager at HP's Colorado
Telecom Division. He re
ceived his BSEE degree in
1981 and his MSEE degree
in 1984 from the University
of Wisconsin at Madison.

- He joined HP in 1984. He
was the project manager for

the Network Advisor's system software. Before the
Network Advisor he worked as a hardware, software,
and production engineer for the HP 4952A protocol
analyzer. Before joining HP he worked as a software
designer at the TRACE center for augmentative com
munication at the University of Wisconsin at Madison.
He was born in Memphis, Tennessee, is married, and
has one son. He likes to bicycle and ski during his
leisure time.

29 Analysis and Real-Time
Environment

SÃ­mil Bhat

Software design engineer
Sunil Bhat joined HP's Colo
rado Telecom Division in
1989 after receiving an MS
degree in computer science
from Iowa State University
at Ames. He received a
Bachelor of Technology
degree in computer science

and engineering from the Indian Institute of Technol
ogy in Bombay, India in 1987. For the HP 4980 Network
Advisor project, he was responsible for the design,
development, and testing of many parts of the analysis
and real-time (ART) environment. His professional
interests include software systems design and per
formance optimization. He was born in Mangalore,
Karnataka, India. He is married and his leisure
activities include backpacking, skiing, and music.

:

100 October 1992 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

3 4 P r o t o c o l A n a l y s i s

RoÃ±a J. Prufer

RoÃ±a Prufer is a member of
t he t echn i ca l s t a f f a t HP ' s
C o l o r a d o T e l e c o m D i v i s i o n .
S h e s t a r t e d w i t h H P a s a
s u m m e r i n t e r n i n 1 9 8 0 a n d
j o i n e d a s a f u l l - t i m e e m
p l o y e e a t H P ' s S p o k a n e
D iv i s i on i n 1981 . She has a
BSEE degree (1981) f rom

W a s h i n g t o n S t a t e U n i v e r s i t y a n d a n M S d e g r e e
(1 9 8 9) i n c o m p u t e r s c i e n c e f r o m N a t i o n a l T e c h n o l o g i
c a l U n i v e r s i t y . B e s i d e s w o r k i n g o n t h e H P 4 9 8 0 N e t
w o r k A d v i s o r a s a s o f t w a r e e n g i n e e r , s h e h a s w o r k e d
a s a p r o d u c t i o n e n g i n e e r f o r t h e H P 4 9 3 7 A t r a n s m i s
s i o n i m p a i r m e n t m e a s u r i n g s e t , t h e H P 4 9 3 8 A n e t
w o r k c i r c u i t a c c e s s t e s t s e t , a n d t h e H P 8 6 0 0 S e r i e s
o f s y n t h e s i z e d s i g n a l g e n e r a t o r s . S h e w a s n a m e d
D i s t i n g u i s h e d N e w E n g i n e e r i n 1 9 9 2 b y t h e S o c i e t y
o f W o m e n E n g i n e e r s a n d r e c e i v e d a t e c h n i c a l
a c h i e v e m e n t a w a r d a t t h e 1 9 9 1 T e c h n i c a l W o m e n ' s
C o n f e r e n c e . S h e i s a m e m b e r o f t h e S o c i e t y o f
W o m e n E n g i n e e r s a n d i s a c t i v e i n H P ' s K - 1 2 e d u c a
t i o n a l p r o g r a m i n C o l o r a d o S p r i n g s . S h e w a s b o r n i n
D e e r P a r k , W a s h i n g t o n a n d e n j o y s s o c c e r , s c u b a
d i v i n g , r e a d i n g , m o u n t a i n b i k i n g , c a m p i n g , h i k i n g ,
c l i m b i n g , a n d t r a v e l i n g i n h e r s p a r e t i m e .

4 1 H P 4 9 8 0 M e c h a n i c a l D e s i g n

Kenneth R. Krebs

Produc t des igne r Ken K rebs
w o r k e d o n t h e p a c k a g e d e
s i g n f o r H P 4 9 8 0 A N e t w o r k
A d v i s o r K e n h a s w o r k e d a s
a p roduc t des igne r a t HP 's
C o l o r a d o T e l e c o m D i v i s i o n
s i nce j o i n i ng HP i n 1980 . He

â € ¢ h a s a l s o w o r k e d o n t h e
' p a c k a g e d e s i g n s f o r t h e H P

4 9 5 3 A a n d H P 4 9 5 2 A p r o t o c o l a n a l y z e r s . B e f o r e j o i n
i n g H P h e w o r k e d o n t h e d e s i g n o f b l o o d p r o c e s s i n g
s y s t e m s a t H a e m o n e t i c s C o r p . H e r e c e i v e d a B A
d e g r e e i n e c o n o m i c s a n d a B S d e g r e e i n m e c h a n i c a l
e n g i n e e r i n g f r o m S t a n f o r d U n i v e r s i t y i n 1 9 7 6 , a n d a n
M S d e g r e e i n m e c h a n i c a l e n g i n e e r i n g f r o m S t a n f o r d
U n i v e r s i t y i n 1 9 8 0 . B o r n i n S a n M a t e o , C a l i f o r n i a ,
h e i s m a r r i e d a n d h a s t h r e e d a u g h t e r s . H i s l e i s u r e
a c t i v i t i e s i n c l u d e s o c c e r , w o o d w o r k i n g , b i c y c l i n g ,
a n d a c t i n g i n a c h u r c h d r a m a g r o u p .

. . â € ¢ â € ¢ â € ¢ - . - . i 4 8 M i c r o w a v e T r a n s i t i o n A n a l y z e r

David J. Ballo

Dav id Ba l l o j o ined HP 's
S a n t a R o s a S y s t e m s D i v i
s i o n a s a n R & D e n g i n e e r i n
1 9 8 0 , w h e n i t w a s t h e S i g
n a l A n a l y s i s D i v i s i o n . H e
c o n t r i b u t e d t o t h e d e s i g n o f
t h e H P 7 0 9 0 2 / 3 A I F m o d u l e s
a n d t h e H P 7 0 7 0 0 A d i g i t i z e r
m o d u l e , a n d w o r k e d o n t h e

syn thes i zed LO , modu la t i on sou rce , ca l i b ra to r , and
A D C o f t h e H P 7 0 8 2 0 A m i c r o w a v e t r a n s i t i o n a n a l y z e r
modu le . A f te r l eav ing the R&D lab in 1 991 , he se rved
a s a m a n u f a c t u r i n g e n g i n e e r f o r a y e a r , a n d i s n o w a
p r o d u c t m a r k e t i n g e n g i n e e r . A n a t i v e o f B e l l e v u e ,
W a s h i n g t o n , h e r e c e i v e d h i s B S E E d e g r e e i n 1 9 8 0
f r o m t h e U n i v e r s i t y o f W a s h i n g t o n . D a v i d i s m a r r i e d .
A w a y f r o m t h e j o b , h e p l a y s b a s s i n a k i e z m e r b a n d
(eas te rn Eu ropean f o l k mus i c) , has p l ayed gu i t a r i n
r o c k b a n d s , a n d t o g e t h e r w i t h c o a u t h o r J o h n W e n
d l e r h a s b r e w e d a w a r d - w i n n i n g b e e r . H e a l s o e n j o y s
sa i l i ng , cyc l i ng , backpack ing , c ross -coun t r y sk i i ng ,
a n d p h o t o g r a p h y .

John A. Wendler

R & D e n g i n e e r J o h n W e n d l e r
j o i n e d t h e H P S a n t a R o s a
Sys tems D i v i s i on (t hen
c a l l e d t h e S i g n a l A n a l y s i s
D i v i s i o n) i n 1 9 8 1 a f t e r r e
ce i v i ng a pa i r o f BS deg rees
i n e l e c t r i c a l e n g i n e e r i n g a n d
m a t h e m a t i c s f r o m t h e
C a l i f o r n i a P o l y t e c h n i c S t a t e

U n i v e r s i t y a t S a n L u i s O b i s p o . H e h a s w o r k e d o n t h e
H P 7 0 7 0 0 A d i g i t i z e r m o d u l e a n d o n d i g i t a l s i g n a l p r o
c e s s i n g (D S P) a l g o r i t h m s , f i r m w a r e d e s i g n , a n d d i g i
t a l d e s i g n o f t h e A D C m e m o r y a n d D S P c i r c u i t r y f o r
t he HP 70820A m ic rowave t rans i t i on ana l yze r modu le .
H e i s n a m e d a s a c o - i n v e n t o r i n a p a t e n t o n r e c o n
s t r u c t i o n o f s a m p l e d s i g n a l s . I n 1 9 8 7 h e r e c e i v e d a n
MSEE degree f rom the Un ive rs i t y o f I l l i no i s a t Urbana-
C h a m p a i g n . J o h n w a s b o r n i n W a s h i n g t o n , D . C . H e i s
m a r r i e d a n d e n j o y s f o r e i g n t r a v e l , b a c k p a c k i n g , a n d
b r e w i n g h i s o w n b e e r

6 3 T r a n s i t i o n A n a l y z e r D e s i g n

Michael Dethlefsen

M i k e D e t h l e f s e n r e c e i v e d
h i s BSEE deg ree f r om the
U n i v e r s i t y o f C a l i f o r n i a a t
B e r k e l e y i n 1 9 8 3 a n d j o i n e d
HP 's S igna l Ana l ys i s D i v i s i on
(n o w t h e S a n t a R o s a S y s
t e m s D i v i s i o n) t h e s a m e
y e a r . H e d e s i g n e d t h e t h i r d
c o n v e r t e r f o r t h e H P 7 0 9 0 7 A

e x t e r n a l m i x e r i n t e r f a c e a n d t h e 3 2 1 . 4 - M H z c a l i b r a
t i o n s o u r c e f o r t h e H P 7 0 9 0 7 B , s e r v e d a s a p r o d u c t i o n
d e v e l o p m e n t e n g i n e e r r e s p o n s i b l e f o r t h e m i c r o w a v e
p h a s e - l o c k e d l o o p s o f t h e H P 7 0 9 0 0 A l o c a l o s c i l l a t o r
m o d u l e , a n d w o r k e d o n m i l l i m e t e r - w a v e m i x e r s a n d
rece i ve rs . Fo r t he HP 71 500A m ic rowave t r ans i t i on
a n a l y z e r , h e h a s d o n e a p p l i c a t i o n d e v e l o p m e n t a n d
s u p p o r t , p a r t i c u l a r l y f o r p u l s e d - R F m e a s u r e m e n t s . I n
1992 he rece ived an MSEE degree f rom the Un ive rs i t y

o f C a l i f o r n i a a t D a v i s . M i k e w a s b o r n i n S a n L u i s
O b i s p o . C a l i f o r n i a H e i s m a r r i e d a n d i s a p i l o t w i t h
a n i n t e r e s t i n a e r o b a t i c s . H e a l s o e n j o y s b a c k p a c k i n g
and duck hun t i ng .

J o h n A . W e n d l e r

Authors biography appears elsewhere in this section.

7 2 H P V E E

Douglas C. Beethe

A s e n i o r s y s t e m a r c h i t e c t a t
H P ' s V X I S y s t e m s D i v i s i o n ,
D o u g B e e t h e w a s t h e p r i n c i
pa l a rch i tec t fo r the HP VEE
s o f t w a r e . S e v e r a l p e n d i n g
p a t e n t s h a v e r e s u l t e d f r o m
t h a t w o r k . D o u g r e c e i v e d h i s
- ; S M E degree from Kansas

^ ^ ^ ^ ^ ^ ^ ^ ^ " â „ ¢ S t a t e U n i v e r s i t y a n d j o i n e d
t h e H P D e s k t o p C o m p u t e r D i v i s i o n i n 1 9 7 9 . B e f o r e H P
VEE , he wo rked i n t h i n - f i lm and NMOS 1C p rocess
m a n a g e m e n t . H e i s a m e m b e r o f t h e I E E E C o m p u t e r
S o c i e t y , a n d h i s p r o f e s s i o n a l i n t e r e s t s i n c l u d e m o d e l
i ng , s imu la t i on , and t he con t r o l o f phys i ca l s ys tems .
B o r n i n H a y s , K a n s a s , D o u g i s m a r r i e d , h a s f o u r c h i l
d r e n , a n d l i v e s o n a 2 0 0 - a c r e f a r m . H e v o l u n t e e r s f o r
s e a r c h a n d r e s c u e a c t i v i t i e s , p a r t i c i p a t e s i n l o c a l m u
s i c a n d d r a m a g r o u p s , a n d e n j o y s o u t d o o r r e c r e a t i o n ,
f l y i n g , t r a v e l , a n d b u i l d i n g r e s t o r a t i o n p r o j e c t s .

Wil l iam L Hunt

B i l l Hun t rece i ved h i s BS
d e g r e e i n c o m p u t e r e n g i
n e e r i n g f r o m I o w a S t a t e
Un i ve r s i t y i n 1980 and h i s
M S d e g r e e i n c o m p u t e r s c i
e n c e f r o m C o l o r a d o S t a t e
Un i ve rs i t y i n 1989 . He j o i ned
HP 's Corva l l i s D iv is ion in
1 9 8 0 a n d i s n o w a s o f t w a r e

e n g i n e e r a t t h e V X I S y s t e m s D i v i s i o n . H e w a s r e
s p o n s i b l e f o r s o f t w a r e d e v e l o p m e n t f o r H P V E E . O n
p rev ious p ro jec ts , he deve loped an MS-DOS I /O l i b ra ry ,
f i r m w a r e f o r t h e H P 1 1 0 c o m p u t e r , a n d I / O c a r d s f o r
HP Se r i es 80 compu te rs . He has a spec ia l i n t e res t i n
ob jec t -o r i en ted p rog ramming and has pub l i shed papers
o n t h a t s u b j e c t . B o r n i n S u m m i t , N e w J e r s e y , B i l l i s
ma r r i ed and en joys b i c yc l i ng and sk i i ng .

7 8 H P V E E U s e r I n t e r f a c e

Will iam L. Hunt

Author's biography appears elsewhere in this section.

8 4 D a t a f l o w A r c h i t e c t u r e

Douglas C. Beethe

Author's biography appears elsewhere in this section.

October 1992 Hewlett-Packard Journal 101
© Copr. 1949-1998 Hewlett-Packard Co.

8 9 D i g i t a l N e t w o r k M o n i t o r

Giovanni Nieddu

Gianni Nieddu isa system
engineer at HP's Necsy Tele
communications Operation.
His professional interests
include protocols and real
time embedded systems. He
studied electronic engineer
ing at the University of
Padova (Padua), graduating

in 1 984. He joined Necsy in 1 987 and was responsi
ble for the system architecture and software of the
HP E3560 digital performance monitoring and remote
test system. Born in Sadie, Italy, he served in the
Italian Alpine troops for a year in 1 985. He is married
and enjoys mountain climbing and trekking, skiing,
and games in general.

Fernando M. Secco

^ j ^ f c I A s y s t e m e n g i n e e r w i t h H P ' s
^ f l l H l ^ I N e c s y T e l e c o m m u n i c a t i o n s
m Y ' O p e r a t i o n , F e r n a n d o S e c c o

, ^ f I s t u d i e d e l e c t r o n i c e n g i n e e r
ing at the University of
Padova (Padua), graduating
in 1982. He served a year in
the Italian infantry in 1983
and joined Necsy in 1989

after several years with Telettra SpA. He was respon
sible for the design of the peripheral units for the HP
E3560 digital performance monitoring and remote
test system. Fernando comes from Piazzola sul
Brenta, Padova. He is married and has one child.

Alberto Vallerini

Alberto Vallerini is hardware
system manager for the HP
E3560 digital performance
monitoring and remote test
system. Previously, he was
hardware system manager
for the HP 3788A error per
formance analyzer. He joined
HP's Necsy Telecommunica

tions Operation in 1988 and has a degree in electronic
engineering from the University of Padova. Alberto
was born in Lendinara, Rovigo. He did his military
service as an official in the transmission service. He
is married and enjoys reading, music, and theater.

1 0 3 G - L i n k C h i p s e t

Chu-Sun Yen

Chu Yen was project man
ager for the G-link chipset at
HP Laboratories. With HP
Laboratories since 1961, he
previously managed high
speed analog ICs, Ethernet
transceiver and cable simu
lation, and infrared network
projects, and was a design

engineer on projects dealing with the HP 8405A vec
tor voltmeter and the HP 35 calculator. A member of
the IEEE, he has authored 20 professional papers on

circuits, phase-locked loops, instruments, and com
munications links, and is named as an inventor in
three patents on a sampling phase-locked loop, the
G-link phase-locked loop, and a dc-to-dc converter.
He received his BSEE degree in 1955 from Taiwan
University, his MSEE degree in 1958 from the Uni
versity of Florida, and his PhD degree in 1961 from
Stanford University. He is married and has three
children.

Richard C.Walker

Rick Walker isa principal
project engineer at HP Lab
oratories, specializing in
phase-locked loop theory
and high-speed circuit de
sign. He joined HP Labora
tories in 1981 and has con
tributed to broadband cable
modem design, solid-state

laser characterization, and the gigabit-link project.
Born in San Rafael, California, he received his BS
degree in engineering and applied science from the
California Institute of Technology in 1982 and his MS
degree in computer science from California State
University at Chico in 1 992. He has authored 1 6 pro
fessional papers and his work has resulted in six
patents and two pending patents, all in the areas of
high-speed links and circuit design. He's a member
of the IEEE. He's also an advanced class amateur
radio operator (WB6GVI) and a private pilot, plays
bass guitar and five-string bluegrass banjo, and culti
vates several dozen kinds of carnivorous plants in a
backyard greenhouse.

Patrick T. Petruno

Now R&D section manager
for link products at HP's
Communications Compo
nents Division, Pat Petruno
was project manager for the
G-link chipset. A native of
Allentown, Pennsylvania, he
attended Pennsylvania State
University, receiving his

BSEE degree in 1976 and his MSEE degree in 1978.
After joining HP in 1978, he designed bipolar transis
tors, Darlington amplifiers, and digital circuits, and
served as project manager for wideband amplifiers,
AGCs, decision circuits, counters, and multiplexers.
He has coauthored three papers on high-speed silicon
circuits and participates in Serial-HIPPI and ATM
(asynchronous transfer mode) standards activities.
Pat is married, has two children, and serves as a Cub
Scout den leader. His interests include astronomy,
astrophotography, swimming, and Softball.

Cheryl Stout

Cheryl Stout has been a
member of the technical
staff of HP Laboratories
since 1983. She has done
research and design for
gallium arsenide and silicon
high-speed multiplexers,
optical receivers, and the
gigabit-link chipset. She is a

member of the IEEE and has authored conference
papers on high-speed multiplexers and the G-link
chipset. Born in San Jose, California, she received
her BSEE degree from California State University at

San Jose in 1 979 and her MSEE degree from the
University of California at Berkeley in 1983. Before
coming to HP, she developed optical communication
products at Plantronics, Inc. Her interests include
mountaineering and natural history.

Benny W.H. Lai

Engineer/scientist Benny Lai
joined the HP Microwave
Semiconductor Division
(now the Communications
Components Division) in
1981. He designed the HP
HDMP-2003/4 decision cir
cuits and the HDMP-2501
clock recovery data retiming

circuit, and did circuit design and layout and high
speed testing for the G-link chipset. He has authored
four papers on his designs and his work has resulted
in one retiming circuit patent and two pending patents
on CIMT coding and a unity-gain positive-feedback
integrator. A graduate of the University of California
at Berkeley, he received his BSEE degree in 1982 and
his MSEE degree in 1983. He was born in Hong Kong,
is married, and enjoys woodworking, gardening, and
skiing.

Wil l iam J. McFar land

HP Laboratories principal
project engineer Bill
McFarland received his
BSEE degree from Stanford
University in 1983 and his
MSEE degree from the
University of California at
Berkeley in 1985. With HP
since 1985, he has designed

high-speed ICs for digital test instruments in silicon
bipolar, gallium arsenide, and heterojunction transis
tor technologies, and has done research on bit error
rate testers and pulse generators. As a member of
the G-link project, he served as technical editor of the
Serial-HIPPI specification. He is the author or coauthor
of a dozen technical papers and is named as an in
ventor in two patents related to bit error rate testers.
Bill was born in Milwaukee, Wisconsin. His interests
include bicycling, playing guitar, and home brewing.

102 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

G-Link: A Chipset for Gigabit-Rate
Data Communication
Two easy-to-use 1C chips convert parallel data for transmission over
high-speed serial links. A special encoding algorithm ensures dc balance
in the is data stream. A binary-quantized phase-locked loop is
used for clock recovery. An on-chip state machine manages link startup
automatically.

by Chu-Sun Yen, Richard C. Walker, Patrick T. Petruno, Cheryl Stout, Benny W.H. Lai,
and William J. McFarland

The last decade has seen a tremendous increase in comput
ing power with only modest advances in the bandwidth of
the data links used to interconnect these computers. Between
1982 and 1992, the speed of a high-performance engineering
workstation has increased from 0.5 MIPS (million instruc
tions per second) to 100 MIPS, an increase of over two or
ders of magnitude. In that same period of time, computer
network bandwidths have gone from Ethernet at 10 Mbits/s
to FDDI at 100 Mbits/s, an increase of only one order of
magnitude. In addition to faster computers, other factors,
such as the widespread use of multimedia applications, will
put pressure on network bandwidths, threatening to create
an I/O bottleneck for modern computing systems.

Unlike computer systems, serial links cannot exploit paral
lelism and must run at proportionally higher rates for each
increment in performance. At clock rates below about 100
MHz, traditional printed circuit board design techniques can
be used to implement link circuitry with collections of pack
aged parts. But as link speeds approach the gigabit-per-second
range, interchip timing skews make it impractical to build
low-cost gigabit links in this way. Although long-haul tele
phone networks have used gigabit-rate data links for many
years, these links use nonintegrable components and require
adjustment and maintenance. Such systems are easily justi
fied when the cost is amortized over millions of users but
are too costly and complex for computer use.

To support the needs of computer and other generic data
transport applications, the HP HDMP-1000 gigabit link
(G-link) chipset has been developed. It is the first commer
cially available 1.4-Gbaud link interface in two chips, a
transmitter chip and a receiver chip, requiring no external
parts or adjustments.

The architecture of the G-link chipset greatly eases the job
of the system designer. Communication between the chipset
and the user's system takes place through a low-speed paral
lel interface. All gigabit-rate signals, with the exception of
the serial electrical data stream, remain internal to the chips
and are never routed on the printed circuit board. Thus the
designer is able to use standard printed circuit board design
techniques to deliver gigabit-rate performance. For fiber

optic applications, the high-speed serial signals are easily
connected to lightwave transmitter and receiver modules.
To simplify the designer's job further, a link-management
state machine controller implemented on the receiver chip
insulates the user from many of the details associated with
link startup and error monitoring.

The chipset was designed in HP's 25-GHz fj silicon bipolar
process and incorporates patented circuit techniques devel
oped at HP Laboratories, namely the encoding scheme and
the phase-locked loop circuit. These new techniques, de
scribed later in this paper, represent departures from tradi
tional telecommunication practice and have made practical
the integration of an inexpensive and easy-to-use gigabit-
rate chipset.

Overview
Fig. 1 shows a typical G-link application supporting a full-
duplex interconnection between two hosts. One transmitter
and one receiver chip are used for each end of the link.

From the user's viewpoint, the chipset behaves as a "virtual
ribbon cable" for the transmission of parallel data over serial
links. Parallel data is serialized by the transmitter chip and
deserialized by the receiver chip into the original parallel
form. The chipset hides from the user all the complexity of

Fig. 1. A duplex link built with the HP HDMP-1000 gigabit link
(G-link) chipset.

October 1992 Hewlett-Packard Journal 103
© Copr. 1949-1998 Hewlett-Packard Co.

G-Link Transmitter

Data

Serial Data

Fig. 2. Simplified transmitter chip block diagram.

encoding, multiplexing, clock extraction, demultiplexing, and
decoding needed for high-speed serial data transmission.

The transmitter chip (Figs. 2 and 3) accepts the user's paral
lel data word and clock. The word-rate clock is internally
multiplied up to the serial rate in the transmitter chip phase-
locked loop. This high-speed serial clock is used to multi
plex the encoded data. The encoding algorithm, called
conditional inversion with master transition, or CIMT,1
creates a frame for data transmission by appending four
coding bits to each input data word. The resulting frame is
then transmitted in either normal or inverted form,2 as nec
essary, to maintain dc balance of the serial bit stream for
transmission over optical links or coaxial cables. This CIMT
line code distinguishes itself by being efficient and simple to
implement compared to other line codes such as 8B/10B.

To support modern network protocols, the chipset allows
the transmission of three different types of frames. Generic
user data is transmitted with data frames. Control frames
are the second type of frame, and are used for the transmis
sion of information that should be treated separately from
data, such as packet headers. Fill frames are the third type
of frame, and are sent automatically by the link during
startup and to maintain synchronization when the user
has neither data nor control information to send.

In the receiver chip (Figs. 4 and 5), the clock and frame
alignment are extracted from the incoming data stream with
a phase-locked loop. The data is then demultiplexed and
decoded back to its original parallel form. In addition to
these basic functions, the receiver chip also includes a state
machine controller, which performs an end-to-end hand
shake and provides both bit and frame synchronization. This
handshake avoids the false lock problems that are typical
with clock extraction circuits that accommodate a wide
range of clock frequencies.

An unconventional "bang-bang" phase-locked loop'3 is used
in the transmitter and receiver to provide adjustment-free bit
retiming at very high data rates. Using the special master
transition built into the line code, the phase-locked loop pro
vides frame synchronization without the periodic insertion
of special frame synchronization words.

A very compact chip layout was achieved by using three lay
ers of metal and a quasi-gate-array ECL design methodology.

1 In this paper, a frame is defined as an encoded input word.

LJ

Fig. 3. Photomicrograph of the transmitter chip.

The 68-pin surface-mount package (Fig. 6) is designed to
maintain good performance for 1.4-GHz signals.

The key features of the chipset are:
Parallel ECL bus interface
16 or 20 bits wide, pin selectable
Flag bit usable as extra data bit (17th or 21st)
CIMT encoding and decoding
Ac/dc coupled
110 to 1400 Mbaud serial line rate
On-chip phase-locked loops for transmitter clock generation
and receiver clock extraction
Local loopback mode for troubleshooting
Single -5V +10% supply voltage
2W power dissipation per chip (typical)
Can be used with fiber optic links
On-chip equalizer for use with coaxial cable
Standard 68-pin CQFP (ceramic quad flat package).

Because of the simplicity and flexibility of the G-link chip
set, it can be used for a wide variety of applications, includ
ing computer backplanes, video distribution, peripheral
channels, and networks.

G-Link Receiver
Data

Startup
Control

State Machine Control ler

Fig. 4. Simplified receiver chip block diagram.

104 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 5. Photomicrograph of the receiver chip.

G-Link Line Code

Many coding schemes have been developed to allow com
munication of information over various types of channels. In
synchronous communication links, clock and framing in
formation must be transmitted along with data in such a way
that the clock and data can be recovered at the receiving
end of the link. Therefore, it is necessary for the transmitted
encoded serial bit stream to have enough embedded clock
information for the receiver to recover the serial clock.
There must also be some method of frame alignment so that
the boundaries of a frame can be located at the receiver.

In optical links, it is desirable to ac couple the data signals
to simplify laser bias circuitry and optical receiver design.
This is also true in repeater design, since the components
are commonly ac coupled. A problem with ac coupled sys
tems is that the baseline will shift when the transmitted digi
tal data is not dc balanced. This shift makes delect ion diffi
cult and degrades the system noise margin. To overcome
this problem, arbitrary data is typically encoded before
transmission to achieve dc balance. The receiver restores
the data to its original form by decoding.

In the G-link chipset, the CIMT coding scheme performs the
following tasks:
The transmitter chip supplies a master transition in every
frame for clock recovery and frame alignment at the receiver.
Frames are conditionally inverted as necessary to maintain
dc balance.
Information is provided in the transmitted frame about the
type of frame transmitted and whether or not the frame was
inverted.
At the receiver, decoding is done to determine what type
of frame was received and whether or not the frame was
inverted.

â€¢ If the frame was inverted at the transmitter, it is inverted
again at the receiver to restore the information to its original
form.

â€¢ The receiver performs error checking on portions of the
frames to detect loss of lock.

This method of encoding and decoding has several
advantages:

â€¢ Clock information is available in each frame, indicating both
phase and frequency alignment.

â€¢ There is no need for the user to send any special characters
to indicate the start of a new frame. The G-link chips perform
frame alignment transparently.

â€¢ There are no restrictions on the user's input bit patterns. Dc
balance is maintained by frame inversion and a maximum
run length is guaranteed by the master transition.

â€¢ By checking for framing errors, the receiver can detect loss
of lock and reinitiate the link startup process. (A discussion
of link startup can be found under "Startup State Machine
Controller" on page 109.)

Data is encoded by appending four extra coding bits (C-field)
to the input data (D-field). The serial combination of the
D-field and the C-field makes a frame. The user can choose
to transmit either data frames or control frames. In addition,
two types of fill frames are internally generated for trans
mission when there is no input supplied by the user or dur
ing startup. To maintain dc balance, data and control frames
are either inverted or not inverted. Information about inver
sion and the type of frame is contained in the C-field. Unlike
typical codes with fixed data width, the CIMT code can
accommodate multiple data widths.

The G-link chipset is designed to transmit either 16-bit-wide
or 20-bit-wide data words. Both the transmitter chip and the
receiver chip have an input pin that allows the user to select

Fig. 6. Transmitter chip in 68-pin ceramic quad flat package
(CQFP).

October 1!)1)2 Hewlett-Packard Journal 105
© Copr. 1949-1998 Hewlett-Packard Co.

the parallel word width. There is also a flag bit, which can
be used as an extra data bit. A frame consisting of the D-field
plus the appended C-field is then either 20 or 24 bits long. In
the case of control frames, two bits in the D-fleld are used for
encoding, resulting in 14 or 18 bits available for transmitting
information. The flag bit is obtained by selecting between
different sets of coding bits in the C-field.

Table I shows the contents of different frames generated at
the G-link transmitter for the case of 20-bit data. DAV (data
input available) and CAV (control input available) are sup
plied by the user to indicate what type of user input is to be
transmitted. If neither data nor control inputs are available,
a fill frame is sent. FLAG is the additional flag bit input. DO to
D19 are the parallel inputs. INV is a logic signal internally
generated on the transmitter chip that indicates whether the
frame is to be inverted.

Table I
Contents of Different Frame Types
for CIMT Encoding of 20-Bit Data

The C-field bits were chosen so that a master transition al
ways occurs between the second and third bits of the C-field.
For data and control frames, this transition can be in either
direction. The C-field bits were also chosen so that the codes

for data and inverted data frames are complements of each
other. The same is true for control frames. This allows the
entire frame to be inverted with the correct C-field bits for a
particular type of frame.

There are two types of fill frames, referred to in Table I as
FFO and FF1. FFO, a training sequence used during startup,
has a single rising edge at the master transition and is a
square wave with 50% duty cycle. The receiver's clock recov
ery circuit is able to lock onto this signal, extract the serial
clock, and provide frame alignment. FF1, another training
sequence used during startup, is also sent after startup
whenever the user does not supply inputs for data or control
frames. FF1 is similar to FFO except that the position of the
falling edge moves by one bit forward or backward, creating
a square wave that is two bits heavy (FF1H) or two bits light
(FF1L). The decision to send either FF1H or FF1L is made
depending on the disparity of previously transmitted bits,
in an attempt to reduce the disparity to zero. Since FFO is dc
balanced and the two types of FF1 frames are sent to reduce
disparity, fill frames are not inverted.

Noninverted control frames have the same C-field as fill
frames, but are distinguished from fill frames by the center
two bits of the D-field, which are 01. Control frames are in
verted when appropriate, but then have a different, unique
C-field.

All other possible C-field codes that are not listed in Table I
are not allowed and are considered to be errors if received.
The receiver detects the loss of a master transition or a for
bidden C-field code as a frame error. This information is
used by the receiver's state machine to derive the link sta
tus. In addition, if the flag bit is not used by the user, it is
used for additional frame error checking. The flag bit is al
ternated internally by the transmitter and this alternation is
checked at the receiver.

Coding Implementation
Fig. 7 shows a block diagram of the transmitter chip. The
user supplies the parallel inputs DO-D19, a frame rate clock,
the DAV and CAV inputs, and the FLAG input (optional). The
high-speed and subrate clocks are derived from the frame
rate clock by a phase-locked loop circuit. "System I/O"

' Disparity is the number of 1 s minus the number of Os.

System I/O

Frame
Clock

Clock
Mul t ip l ie r

(Phase-Locked
Loop)

Fig. 7. Transmitter encoding
circuitry.

106 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

System I/O

High-Speed
Serial Input

Clock
Recovery

C-Field (to State Machine)
CAV
DAY
HAG

DO-D19

Frame Clock

High-Speed and
Subrate Clocks

Fig. 8. Receiver decoding circuit ry.

refers to other signals that are involved in the link's config
uration and status. RFD (ready for data) is an output indicat
ing to the user that the link is ready to transmit data. The
D16-D19 inputs are ignored when the user selects 16-bit
parallel word width.

Depending on the DAV, CAV, and FLAG inputs, the C-fleld coding
bits are generated and any necessary encoding of the D-fleld
is performed. Then the C-field and D-fleld bits are evaluated
in a sign circuit whose output is the sign of the disparity of
the frame. A separate accumulator keeps track of the dispar
ity of previously transmitted bits. The decision to invert or
not to invert a frame is made based on the outputs of these
two circuits and is indicated by the signal INV. If the signs of
the disparities of the current frame and the previously trans
mitted bits are the same, INV is high and the current frame is
inverted. If they are not the same, INV is low and the frame is
not inverted. Only data and control frames are inverted; the
invert function is disabled for fill frames. The frame is serial
ized with a circuit that multiplexes the parallel inputs into a
serial bit stream and performs any necessary frame inver
sion. The output of this circuit is then transmitted across
the serial link.

A block diagram of the decoding portion of the receiver chip
is shown in Fig. 8. After startup, the serial clock and the
framing information are produced by the receiver's clock
recovery circuitry, allowing the receiver to recover the serial
data and demultiplex it back to parallel form. The frame
clock is provided as an output for use in the user's system.

By examining the C-field bits, the C-field decoder deter
mines what kind of frame has been received and whether or
not it has been inverted. With this information, the D-field
decoder restores the parallel data back to its original form.
In addition, the C-field decoder provides DAV, CAV, and FLAG
information back to the user. These signals have the same
definitions as the corresponding transmitter inputs. The
C-field bits are also used by the receiver's state machine to
check for frame errors.

Encoding Circuitry
Encoding on the transmitter chip is performed mainly by
logic cells and two on-chip programmable logic arrays
(PLAs). However, there are two special parts of the frame
inversion function. The first is an analog sign circuit which

determines whether a frame has more high or low bits. The
second is an accumulator which keeps track of the disparity
of the pre\iously transmitted data.

The sign circuit on the transmitter consists of one differen
tial pair per bit. a summing circuit, and a comparator. To
prevent errors in determining a frame's sign, it is important
for the differential pairs to have matched current sources.
Therefore, each differential pair is supplied by two current
sources from an array of current sources laid out in com
mon centroid fashion. This reduces the effects of process
and temperature gradients on the value of each pair's com
bined current source. In addition, large-geometry resistors
are used to improve matching of the current sources.

The currents are summed at shared collectors through resis
tors, creating a differential voltage proportional to the differ
ence between the numbers of Is and Os in the frame. When
there are more Is than Os, this voltage is positive; when
there are more Os than Is, it is negative. This voltage then
drives a comparator, which produces a high or low logic
signal depending on the sign of the input voltage. This
method of determining the sign of a frame is simpler and
faster than a digital solution.

The accumulator circuit keeps track of the disparity of pre
viously transmitted bits. It is implemented with a 6-bit up/
down counter. To relieve timing constraints, the counter
operates on two bits at a time. This allows it to operate at a
clock rate that is half the serial output rate.

The counter can count from all Os to all Is and is reset at
startup to the midpoint, which is considered a balanced
state. The range of this 6-bit counter is then -32 to +31 bits,
where 0 is the balanced state. With two input bits, there are
four possible combinations: 11 which has a disparity of +2
bits, 00 which has a disparity of -2 bits and 01 or 10 which
are balanced with zero disparity. Since we only need to
count up or down by multiples of 2, we can allow one bit of
the counter range to correspond to a disparity of 2 bits.
Thus the effective counter range, in bits of disparity, be
comes -64 bits to +62 bits. The worst-case disparity that can
occur with this coding scheme is Â±31 bits, which is well
within the range of the counter. The most-significant bit of
the counter is compared with the output of the sign circuit
to decide whether to invert the frame.

Accumulating two bits at a time is the most convenient ap
proach. If the counter were to operate on one bit at a time, it
would still have to count either up or down and one bit of
the counter range would correspond to one bit of disparity.
Thus, the range of a 6-bit counter would be -32 to +3 1 bits of
disparity, which would not have enough margin beyond the
worst-case disparity of Â±31 bits. A higher-order counter
would be required, and it would also have to run at the full
serial output rate, resulting in increased power consumption.

If the counter were to operate on four bits at a time, it
would have the benefit of running at one fourth of the serial
rate, but it would have to count up and down by 4, up and
down by 2, or remain unchanged. One bit of the counter
range could correspond to two bits of disparity as in the
case implemented, but the counter design would be more
complex.

October 1992 Hewlett-Packard .I 1 0 7
© Copr. 1949-1998 Hewlett-Packard Co.

Retimed
Output

Data

Clock Extraction Chain

Variable Delay
Phase Adjust

Fig. requires Typical clock extraction and data retiming circuit requires
phase adjustment and wide bandwidth.

Phase-Locked Loop

In a serial data link, the clock signal is not explicitly trans
mitted, but is instead implied by the transitions of the data
stream. By examining the transitions in the data stream with
a clock extraction circuit it is possible to create a replica of
the original clock that was used to transmit the data. This
recovered clock can then be used to sample and restore the
potentially degraded analog input.

Many high-speed clock extraction techniques exist, but most
have been developed for long-haul telephone applications.
Telecom systems are designed to maximize the distance-
bandwidth product of the link. This criterion minimizes both
the number of physical repeater sites and the number of
fibers that have to be installed in a given run. As a result, a
much higher premium is placed on clock-extraction perfor
mance than on cost-effectiveness. These objectives have
made for class of clock extraction techniques unsuitable for
datacomm applications.

Traditional Telecom Clock Extraction Circuits
Fig. 9 shows a representative clock extraction and data re
timing circuit that is used for high-bit-rate telecom systems.
The incoming analog data stream is split into two parallel
paths: the clock extraction chain and the data retiming path.

Because an NRZ (nonreturn to zero) data stream does not
have a spectral component at the clock frequency, some
nonlinear process must be used to derive a clock signal
from the data stream. In the typical circuit of Fig. 9, a time
derivative is applied, followed by an absolute value function.
This combination of elements creates a narrow unidirec
tional pulse for every transition of the data. This new wave
form contains a spectral component at the clock frequency.
Once the clock component has been created, it can be iso
lated either by a filter, typically implemented with a SAW
(surface acoustic wave) device, or by a phase-locked loop.

There are two problems with this configuration. The first is
that, although the circuit extracts the correct clock fre
quency, it does not extract the correct phase. There is a
large phase shift between the input data and the recovered
clock. The phase relationship between the clock and the
data must then be adjusted somehow to compensate for
process and temperature variations. The second problem is
that the creation of narrow pulses requires high circuit
bandwidth. This is often the speed-limiting factor for giga
bit-rate clock recovery circuits.

G-Link Solution
A design goal of the G-link chipset was to eliminate all exter
nal parts and user adjustments and effectively hide the sys
tem complexity from the user through monolithic integration.
The clock extraction circuit was most impacted by these
requirements. To achieve these aggressive goals, a new
phase-locked loop circuit was developed based on a binary-
quantized ("bang-bang") phase detector.

The phase-locked loop circuit used in the G-link chipset (see
Fig. 10) works hand in hand with the CIMT line code to
avoid both the phase adjustment problem and the band
width requirement of the traditional techniques. In this cir
cuit, the incoming data splits into two paths (just as in the
traditional telecom approach). Instead of a complex phase
detector, which is potentially mismatched in delay to the
retiming latch, two matched latches are used at the front
end of the circuit. One latch is used for retiming and the
other for phase detection. Because both latches are laid out
identically on the chip, their delays are well-matched.

The two latches are driven by the VCO through a comple
mentary buffer. If the VCO is properly aligned, the top latch
samples the center of the data cell on rising edges of the
clock while the lower latch samples the data transitions on
the falling edge of the clock.

Because the G-link line code provides a guaranteed transi
tion at a fixed, defined location in every frame, the sample
of this transition can be used as an indication of the loop
phase error. The VCO output is divided by either 20 or 24,
depending on the selected word width, to produce one sam
pling pulse per frame. That clock pulse is used to take a
sample in the vicinity of the master transition so that a
phase update is generated, once per frame, indicating
whether the VCO is early or late with respect to the master
transition. Assuming a rising master transition, as shown in
Fig. 11, if the VCO is too high in frequency, the sampling
point drifts to the left of the master transition and a low
value is sampled. If the VCO is too low, the sampling point
moves to the right and a high value is sampled. This circuit
then produces a one or zero indication from the phase detec
tor that tells whether the VCO is early or late with respect to
the incoming data.

Since the fastest operating element in this circuit is a latch
operating at the serial rate, this circuit is usable up to the

Retimed
Output Data

VCO

Transition
Samples

Master
Transition
Samples

Fig. (bang- Simplified diagram of the G-link binary-quantized (bang-
bang) phase-locked loop and data retiming circuit.

108 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Mas te r T rans i t i on
in Data St ream

.
X X X X \ ! / i \ X X X

I I

Input Data

(Point Â© in Fig. 101

VCO Early, Rising Edge
Samples a 0

(Point (b) in Fig. 101

VCO Late, Rising Edge
Samples a 1

Fig. the Once per frame, the phase-locked loop detects whether the
VCO is early or late with respect to the master transition encoded in
each frame.

highest frequency at which a given process is capable of
making a functioning latch. In addition, the circuit inher
ently provides excellent phase alignment between the VCO
and the data. Note that the output of the phase detector latch
is not linearly proportional to the loop phase error, but is
instead a binary-quantized representation of the error. This
characteristic renders the loop equations nonlinear and re
quires unconventional design methods (see "Bang-Bang
Loop Analysis," page 110).

False Locking and Frame Synchronization
During initial link startup, it is necessary to ensure that the
phase-locked loop correctly determines the frequency of the
incoming data and finds the location of the master transition.

In many clock extraction circuits, the clock frequency is
extracted from a coded, random data stream. A common
difficulty with this approach is the problem of the phase-
locked loop locking onto wrong frequencies that are har
monically related to the data rate. To avoid this problem,
most systems limit the VCO range so that it can never be
more than a few percent away from the correct frequency.

A narrow-band VCO using external components was not
consistent with the goal of building a completely monolithic
chipset. Integrated oscillators rely on low-tolerance 1C com
ponents and are typically limited to +30% tolerance on the
center frequency. For customer flexibility, it was desired to
extend the oscillator range to cover at least an octave. This
range, in conjunction with digital dividers, allows the G-link
chipset to operate over a range of 1 10 to 1400 Mbaud in four
bands.

A second design problem is frame synchronization. At the
receiver, some method must be employed to determine the
boundaries between frames so that they can be properly
deserialized back into the original parallel words. The G-link
chipset establishes and monitors frame synchronization by
using the embedded master transition. Unlike other links,
the G-link chipset allows the continuous transmission of
unbroken streams of data, without the insertion of special
frame synchronization words.

Startup State Machine Controller
To eliminate the problems of false locking and frame syn
chronization, the G-link chipset uses a startup state machine
and the special training fill frames.

Because the internal VCO is capable of operating over
nearly a 3:1 range of frequencies, a frequency detector is
necessary to avoid false locking problems. The frequency
detector operates only when simple square-wave fill frames
are being sent. A conventional sequential frequency detec
tor, built of two resettable flip-flops, determines the sign of
the frequency error. When the phase error is less than Â±22.5
degrees, the output of the phase detector is used. Otherwise,
the loop filter is driven by the frequency detector output.
Because the frequency detection circuit cannot operate on
data frames, the state machine controller must disable the
frequency detection circuit before allowing data to be sent.

Neither node of a duplex link can achieve lock unless the
opposite side is sending special fill frames. Neither side of
the link can stop sending fill frames and start sending data
unless the other side has successfully achieved lock. The
state machine uses the two distinct fill frames FFO and FF1
to allow one side of the link to notify the other side of its
current locking status. This guarantees that fill frames will
be sent whenever needed to restore lock, and only as long
as necessary to achieve lock.

As described previously, FFO is a 50% balanced square wave
with equal numbers of 0 and 1 bits. FF1 consists of two
modified square-wave patterns. These two patterns are used
as needed to maintain dc balance on the link. Both FFO and
FF1 have a single, rising transition, which is in the same
position in the frame as the master transition of data and
control frames. The rising edge of the fill frames is used ini
tially to establish an unambiguous frame reference. After
initial lock, the master transition of the data frames is used
to maintain frame lock.

Fig. 12 shows the state machine handshake procedure for a
full-duplex link in greater detail. Both the near and far ends
of the link independently follow the state diagram of Fig. 12.
The three states are defined by the state variables STATO and
STAT1. At power-up, each end of the link enters the sequence
at the arc marked "Start."

S t a r t

F r e q u e n c y a n d F r a m e
A c q u i s i t i o n

0 ,0

FFO or FF1

W a i t i n g f o r P e e r

0,1

S e n d i n g D a t a

1,1

F F 1 o r D a t a o r C o n t r o l

F r a m e E r r o r o r D a t a
o r C o n t r o l

F F 1 o r D a t a o r C o n t r o l

Fig. link, State machine handshake procedure for a full-duplex link,
showing the values of the state variables STATO and STAT1 (0,0, etc.).

October 1992 Hewlett-Packard Journal 109
© Copr. 1949-1998 Hewlett-Packard Co.

Bang-Bang Loop Analysis

A simplified version of the clock recovery phase-locked loop of the G-link chipset
is shown in Fig 1 . Only the transition sampling latch is shown, and the input is
assumed to be a square wave at the same frequency as the VCO.

The VCO integral controlled through a loop filter that consists of the sum of an integral
signal VCO a proportional signal. Because the phase detector is quantized, the VCO
frequency switches between two discrete frequencies, causing the VCO to ramp
up and down in phase, thereby tracking the incoming signal phase.

If the loop is properly designed, the system can be considered to be composed of
two noninteracting loops. These are the paths labeled proportional branch and
integral branch in Fig. 1 . The first loop includes the connection of the phase detec
tor to second VCO input through a proportional attenuator, while the second loop
drives the VCO through an integrator.

The proportional signal tunes the VCO, causing the output of the phase detector to
switch dc between 1 s and Os at a fairly high frequency. Other than the dc
component, the bulk of the phase detector output signal spectrum falls outside the
effective passband of the integrator branch of the loop. Thus the integrator branch
operates on just the dc component of the phase detector output. Its job is to servo
the center frequency of the VCO so that the two discrete VCO frequencies pro
grammed by the proportional input will always bracket the frequency of the in
coming not signal. This frequency adjustment occurs so slowly that it does not
materially affect the operation of the high-frequency bang-bang portion of the
loop.

Proportional Branch
To simplify the analysis of the first branch of the loop in Fig. 1, the integrator
output tuning be replaced with a constant reference voltage so the proportional tuning
input run cause the VCO to bracket the incoming frequency. The VCO will then run
at two incoming frequencies: at a frequency slightly higher than the incoming data,
thereby advancing the phase, or at a lower frequency, thereby retarding the phase.

If the incoming frequency is midway between these two discrete frequencies, the
loop will switch between the two frequencies with approximately a 50% duty
cycle. If the incoming frequency is slightly higher than the nominal VCO center
frequency, the duty cycle will shift such that the loop will spend a higher percent
age of time at the high frequency than at the low frequency. In general, it can be
shown that the duty cycle present at the output of the phase detector is propor
tional to the difference in frequency between the incoming signal and the nominal
VCO center frequency.

Integral Branch
The second branch of the loop contains the integrator. Because the integrator
effectively filters out the oscillatory portion of the phase detector output and only
reacts to the average value of the phase detector output stream, the proportional
branch a the loop can be ignored here by replacing the phase detector with a
virtual frequency detector. The integrator extracts the dc component and thereby

M a s t e r
Transitions

Phase
Detector

Latch Proportional Branch

VCO

Total VCO Phase Change
Resulting from Step In

Detector Output

Phase Change from
Integral Branch

Fig. 1. considered version of the phase-locked loop. For analysis, the loop can be considered a
combination of two noninteracting loops: a proportional branch and an integral branch.

Phase Change from
Proportional Branch

1 2

Time (in update times)

Fig. the change to VCO phase changes. Stability factor is the linear phase change divided
by the quadratic phase change in the same time.

tunes the center frequency of the VCO so that it is always equal to the incoming
data rate.

In a conventional linear phase-locked loop, the loop error signal is proportional to
phase error but is used to control the VCO frequency. This introduces an integration
in the loop transfer function. This integration, in conjunction with the loop filter,
creates a second-order feedback loop. Such loops can exhibit an underdamped
response to changes in input phase, leading to an undesirable exponential buildup
of jitter in systems with long cascades of repeaters.

In the G-link phase-locked loop, the phase-detector dc component is proportional
to frequency rather than phase. Because the the frequency of the VCO is con
trolled in a frequency error signal rather than a phase error signal, no extra in
tegration appears in the loop transfer function. This means that no jitter buildup
results from the action of the integral branch of the loop. The jitter statistics are
simply proportional by the hunting behavior of the high-frequency proportional
branch of the loop.

Loop Stability
To reach a qualitative understanding of the loop behavior, the two branches of the
loop to assumed to be noninteracting. For this assumption to be valid, certain
conditions must be met.

It is samples, that the loop be set up so that, between phase samples, the action
of the proportional branch of the loop dominates over the action of the integral
branch. This can be verified by creating a step change from the phase detector
and tracking its effect on both halves of the loop. Fig. 2 shows the contributions to
the VCO make change. In the proportional path, the VCO is programmed to make
a small In change in frequency, which causes a linear ramp in the phase error. In
the integral path, the integrator programs a linear ramp in VCO frequency, which
causes a quadratic walk-off in the VCO phase.

The ratio of these effects at the end of one frame update time gives a figure of
merit for the loop design. The phase change from the proportional branch of the
loop must be greater than or equal to the phase change from the integral branch
of the stability for the system to be stable. In the G-link design, this stability ratio is
designed to be always greater than 1 0.

Richard C. Walker
Principal Project Engineer
Hewlett-Packard Laboratories

110 October 1992 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

veo
Output

Fig. 13. The VCO consists of three variable-delay cells configured as
a ring oscillator.

Each state in the state machine has three notations. The top
notation is either "FDet" or "Phase." FDet stands for fre
quency detect mode, and implies that the frequency detector
has been enabled in the receiver chip phase-locked loop.
When the chip is in this mode, it is important that no data be
sent, because the frequency detector is only able to lock onto
one of the special training fill frames FFO or FF1. The Phase
notation means that the receiver phase-locked loop has
been switched to phase-detect mode and is ready to allow
data transmission. The middle notation in each state is the
fill word that is currently being sent by the node's transmit
ter chip. The last notation is the ready-for-data (RFD) status
of the transmitter chip. When RFD is low, the transmitter chip
signals the user to hold off any incoming data while it is
sending fill frames. When RFD is high, data is sent if avail
able, and if not, fill frames are sent to maintain link
synchronization.

The two bits bracketing the master transition are monitored
by the receiver chip to detect a locked condition. If these
two bits are not complementary for two or more consecu
tive frames, it is considered a frame error. The receiver
chips at both ends of the link are able to detect data, con
trol, FFO, and FF1 frames and frame errors. Transitions are
made from each of the states based on the current status
condition received by the receiver chip. Each of the arcs in
Fig. 12 is labeled with the state that would cause a transition
along that arc.

If either side of the full-duplex link detects a frame error, it
notifies the other side by sending FFO. When either side re
ceives FFO, it follows the state machine arcs and reinitiates
the handshake process. The user is notified of this action by
the deasserting of RFD.

This startup protocol ensures that no user data is sent until
the link connectivity is fully established. The use of a hand
shake training sequence avoids the false lock problem in
herent in phase-locked loop systems that attempt to lock
onto random data with wide-range VCOs.

Loop Implementation
The VCO is built from three variable-delay cells configured
as a ring oscillator (Fig. 13). The ring provides a wide-range
tuning input and a small "bang-bang" tuning input. The wide-
range input adjusts the delays of each stage from one gate
delay to three gate delays, thus giving a 3:1 VCO frequency
range. This wide range allows the final system to be specified
with a 2: 1 range over both process and temperature varia
tions. The bang-bang tuning input programs a small change
in the VCO frequency and is driven by the proportional
branch of the loop filter.

The loop filter is implemented with a charge pump integra
tor and a 0.1-uF external capacitor, which is housed within
the package. The integrator is based on a unity-gain positive
feedback technique (Fig. 14) which cancels out the droop in
the integrator filter capacitor. The effective dc gain of this
circuit approaches infinity as the feedback gain approaches
unity. The unity-gain technique achieves high dc gain while
avoiding the stability and noise sensitivity problems of on-
chip high-gain operational amplifier designs.

G-Link Chipset Implementation

To achieve the best speed and power performance, the
G-link chips were designed using the HP B25000 25-GHz fT
silicon bipolar process. This process allows mixed-mode
designs ranging from dense low-power logic structures to
high-performance analog cells. A three-layer metal system
allows compact layouts, minimizing chip area and cost. This
process features transistors with minimum pitch of 2.6 um.
Only simple npn transistors and p+ and p- resistors were
used in the design.

Building Block Design
The G-link chipset is a fully custom circuit using specially
designed cells as building blocks. These include (1) logic
cells for of gates, latches, and flip-flops, (2) PLAs for
low-speed logic, and (3) I/O cells, which include all of the
low-speed ECL and high-speed input and output drivers. A
band-gap reference was also designed to stabilize chip per
formance with variations in temperature and power-supply
voltage.

Logic Cells and Arrays. Since logic elements are used most
widely in the G-link chipset, considerable effort went into
optimizing their performance, power, and active area. A
three-level tree structure was chosen to implement the logic
functions. All signals are differential to improve noise mar
gins and to reduce ground currents, which could disrupt the
analog circuitry. The inputs and outputs of these gates and
latches are fully level-compatible for ease of routing. Each
functional cell has resistor options by which the speed can
be traded off with power. In all, there are four power classes
for each logic cell. An example of a master-slave flip-flop with
a 2:1 input multiplexer is shown in Fig. 15. This circuit is
designed to operate up to 2 Gbits/s at a junction temperature
of 125Â°C with a fanout of 10.

Input from Phase
Detector Latch

Output to VCO

External
Capacitor

(in Package)

For A 1 , C i rcu i t Approx imates
Ideal Integrator with Time

Constant = RC

Fig. 14. The loop filter is implemented with a charge pump
integrator based on a unity-gain feedback technique.

Ort i il icr 1!)!)2 I lewh-l l-I'arkard Journal 111
© Copr. 1949-1998 Hewlett-Packard Co.

GND (OV)

SEL

CLK

CLK

V E E (- 4 . 5 V)

Fig. 2:1 Schematic diagram of the master-slave flip-flop with 2:1 input multiplexer.

Low-speed logic is implemented, where possible, with array
structures for compactness and reduced power. The single-
ended logic PLAs with AND-OR planes are designed to be pro
grammed using only metal layers. Altogether, two PLA cells
are used in the transmitter and one in the receiver.

Input/Output Cells. An effort was made in the I/O design to
make the chips easy to use. Except for the high-speed serial
signals, all of the chip I/O is 100K ECL-level-compatible. To
minimize the power dissipation of the chip, ECL outputs are
limited to driving 10 cm of transmission line with a mini
mum characteristic impedance of 50 ohms terminated into
300 ohms. For added convenience, unconnected inputs are
internally biased to low ECL logic levels, and are sensed as
high levels if the inputs are grounded.

A special input cell was designed for all gigabit-rate input
signals. Both differential inputs of the cell are biased to
ground with 50-ohm terminating resistors. This configura
tion allows singled-ended or differential input signals to be
conveniently ac or dc coupled. This cell is used for the
strobe and high-speed clock inputs of the transmitter and
for the data and high-speed clock inputs of the receiver.

The G-link chipset is designed to work with either optical
fiber or copper coaxial cable media. For cable applications,
the data input cell of the receiver has an optional equalizer
to extend the usable distance of the link. The equalizer cir
cuit is designed with 3 dB of gain peaking at 600 MHz to
compensate for signal roll-offs caused by the skin loss effect
in coaxial copper cables. Operating at 1.2 Gbaud with RG-58
coax, the equalizer extends the usable cable length by over
50% for a given bit error rate.

All high-speed outputs are driven by buffered-line-logic
cells. Buffered-line-logic drivers^ provide differential out
puts capable of delivering 0.7V into 50 ohms, ac or dc coupled
to ground. If dc is coupled into -1.3V, the levels are ECL-
compatible. In addition, the source impedance of the driver
is matched to 50 ohms with a VSWR of less than 2:1. This

makes the high-speed connections of the G-link chips very
convenient and easy to use. The only requirement is that
unused outputs be terminated into 50 ohms.

Band-Gap Reference. To minimize circuit drifts caused by
environmental changes, a band-gap reference with power
supply compensation was designed. This circuit provides a
reference voltage that powers up all cells in both chips. A
power-down feature in this circuit enables portions of the
chips to be turned off to conserve power.

Layouts
To minimize the design and layout effort, a generic design
structure was used as the basis for all cell layouts. Each of
the various logic cells was built from the generic array of
transistors and resistors by customizing the metal intercon
nections. The ratio of devices used to total devices available
reached over 95% in this design. This layout technique has
the advantage of easy reconfiguration for design revisions.
The I/O port locations are uniformly defined for all cells to
simplify cell interconnection.

An example of a master-slave flip-flop with a 2:1 multiplexer
input is shown in Fig. 16. This circuit array, measuring just
104 by 135 fim, is customized with two layers of metal.

All cells and power buses are designed to be placed using a
coarse grid. This simplifies the placement of cells in the sys
tem design level. Another feature is that all cells have test
probe points accessible at the top metal such that all con
nection signals can be test probed for diagnostic purposes.

The transmitter and receiver chips each measure 3.5 mm on
a side. The high-speed and low-speed pads for each chip are
arranged so that a single package design accommodates
both chips.

The design of the chips relied heavily on simulation and veri
fication tools such as the Spice simulation program and HP's
proprietary Bipolar-Chipbuster 1C layout system. The Spice

112 October 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. input Chip layout of the master-slave flip-flop with 2: 1 input
multiplexer.

circuit description files were extracted from the artwork
including parasitic capacitors for final simulation before
fabrication.

Packaging
A custom 68-pin ceramic quad flat package (CQFP) was
designed specifically for the G-link chipset. It features
50-ohm transmission lines for the high-speed I/O pins and
internal 0.1-[Â¿F capacitors for power supply bypassing and
for the integrator of the phase-locked loop. It also has inter
nal ground vias to minimize inductance, thereby reducing
noise. Its outline conforms to standard 68-pin packages. The
typical chip-to-case thermal resistance is under 14Â°C/W.
Both the package and the chips are compatible with auto
matic assembly techniques for high-volume low-cost
manufacturing.

After the chips and capacitors are mounted and the pack
ages sealed on the lead frame, the units are placed onto
plastic carriers for lead protection. A special test fixture was
designed to test the final parts in this carrier at full speed.

Electrical Performance
The G-link chips' power dissipations are both under 2.5 watts
worst-case. The 20%-to-80% rise and fall times of the high
speed data outputs are under 200 ps. The chipset is specified
from 1 10 Mbaud to 1.4 Gbaud under all conditions. The
lockup time of the phase-locked loop including frequency
acquisition is less than 2 ms.

Features and Applications

The features and flexibility of the G-link chipset make it
ideal for a wide variety of applications. These applications
range from computer backplane links a few meters in length
to wide area networks 10 kilometers long. The low cost and
high integration level of the G-link chipset make it attractive
for systems requiring serial transfer rates up to 1.4 Gbaud. It
can serve as a generic virtual ribbon cable or can be used to
build complete networks and peripheral channels. The G-link
coding scheme has been accepted by the Serial-HIPPI (High-
Performance Parallel Interface) Implementors' Group, and
by SCI-FI (Scalable Coherent Interface-Fiber), an IEEE
standard.

This section describes the features that allow the G-link chip
set to be applied to this broad range of applications. It also
describes a few specific applications, including generic data
transport, networking standards, and simplex applications.

Ease of Use
Since most computing equipment both sends and receives
data, the great majority of these applications are full-duplex.
The state machine controller included on the chipset takes
care of all the details of starting up such a duplex link. The
designer needs to be concerned with only two signals:
ready for data (RFD) and data available (DAV). RFD is the sig
nal the state machine provides to indicate that the link is
ready for data transmission. DAV is a signal the user controls
to mark the availability of data. At the receiver, this signal is
recovered and used to discern the beginning or end of data
transmission.

Some applications generate data in bursts or as packets.
Such bursty data is handled automatically by the chipset.
When no data is available to transmit, the user simply deas-
serts the DAV line at the transmitter. The link will transmit
FF1 as an idle code to maintain link lock and framing. At the
receiver, a deasserted DAV signal indicates that data is not
being received. At the start of the burst of data, the user
asserts the DAV line at the transmitter. The data is transmitted
across the link and marked as valid data at the receiver by
the receiver's DAV signal. Thus the DAV signals can mark the
beginning and end of packets while adding no burden to the
system design.

More complicated packet headers can be created using the
control available (CAV) signal. This signal works like the DAV
signal, but instead of marking the data as valid data words, it
marks the data as special control words. A system designer
can use these to send packet header information, link or
system control information, or anything that needs to be
treated separately from data. At least 214 control words are
available, so they can be used to indicate a large number of
packet addresses or special functions. Few communication
links have such a rich selection of nondata words for control
and signaling.

Flexibility
Flexibility was a major goal of the G-link design. To make
this to high-volume, low-cost part, the chips were designed to
meet the needs of as many different systems as possible. As

October 1992 Hewlett-Packard .Journal 1 13
© Copr. 1949-1998 Hewlett-Packard Co.

HIPPI Interface

described earlier, the G-link line code can accommodate
various word widths. This is very different from block codes
such as 4B/5B and 8B/10B, which have fixed word widths.
The G-link chipset readily accommodates data words of
width 16, 17, 20, 21, 32, or 40 bits. The chipset has two fun
damental word sizes: 16 or 20 bits. In addition, the flag bit is
available. Therefore, 17-bit-wide words can be accommo
dated by selecting 16-bit frames and using the flag bit as a
17th bit. 21-bit words can be transmitted similarly. 32-bit
words are supported by sending them as two 16-bit frames
in a row. In this case the flag bit is used to distinguish the
first 16-bit frame (e.g., flag = 0) from the second 16-bit frame
(e.g., flag = 1). It is a simple matter to build the off-chip
32:16 multiplexers and 16:32 demultiplexers since the flag
bit automatically keeps track of the necessary frame order
ing. 40-bit-wide words are supported analogously. The trans
mitter chip accepts either a full-frame-rate clock or a half-
frame-rate clock for multiplication up to the serial clock rate.
In other words, for an 800-Mbit/s data rate and 16-bit words,
the chip will accept a 50-MHz frame clock. When 32-bit words
are transmitted it accepts a 25-MHz frame clock. This saves
the system designer the trouble of doubling the word clock
outside the chip.

The G-link chipset supports a wide range of serial transfer
rates ranging from 110 Mbaud all the way up to 1.4 Gbaud.
This wide range makes it attractive for many types of data.
Because the -chipset requires no off-package tuned elements
or adjustments, it can be digitally switched between data
rates. This is unlike other systems, which require tuned ele
ments and precise adjustments and operate over very nar
row ranges of frequencies. Switching between data rates
aids testing and debugging. It can also be used to establish
a standard physical layer that spans several operating
frequencies.

Generic Data Transport and Proprietary Channels
The most prevalent application of the G-link chipset is ge
neric data transport. In these applications, the chipset acts
as a point-to-point unswitched bus extender, or virtual ribbon
cable. A great advantage of the G-link chipset is that it auto
matically handles startup and framing. Once the link is oper
ating, the user can send data continuously, without having to
insert extra framing characters or form special packets. Other
links typically require that special framing characters be
periodically inserted into the data stream. For systems trans
mitting data continuously for long intervals, periodically
inserting these special characters can be difficult and ineffi
cient. Other link chipsets do not have a built-in hardware
controller that signals when the link is operating improperly.
Without these signals the system designer must depend on
upper-level protocols, resulting in uncertain time delays.

In many applications, a point-to-point unswitched bus ex
tender is sufficient. In these applications, the G-link chipset

Fig. 17. Serial-HIPPI (High-
Performance Parallel Interface)
system implemented with the
G-link chipset.

is all that is required and can form a complete communica
tion link. The chipset can also be used in more complicated
networks because it transports any data format across the
link. Examples of standard data formats that can benefit
from a point-to-point bus extender within private networks
include SONET/SDH, Fiber Channel, and ATM data. SONET/
SDH is a telecommunication standard that specifies data
rates of 155 Mbits/s, 622 Mbits/s, 1.24 Gbits/s, and higher.
Fiber Channel is an ANSI standard (X3T9.3) that covers a
variety of data formats and rates. The IEEE 802.6 standard
is an example of an ATM (asynchronous transfer mode)
network.

The flexibility and ease of use of the G-link chipset enable
it to fit a wide variety of applications. High-data-rate connec
tions to disks and other peripherals are typical uses. These
applications benefit from the very low overhead, simple
operation, and high integration of the G-link chipset. For
example the HP 271 11A, introduced in 1988, is a fiber optic
connection for disk arrays at 80 Mbits/s. With the tremen
dous increase in computing power and I/O rates in the last
few years, the G-link chipset is well-suited for this type of
application.

There is growing interest in using serial links for computer
backplanes. Computer backplanes are typically jammed with
hundreds of signals at data rates exceeding 100 Mwords/s. It
can be difficult to control the skew on parallel data paths at
high data rates. In addition, transmitting the data in parallel
can require significant space. Serial links using optical fiber
or coaxial cable may be the only way to transmit data with
out degradation by skew, loss, or reflections, while saving
space.

Serial-HIPPI
In May 1991 the G-link chipset was accepted as the basis of
the Serial-HIPPI standard. Serial-HIPPI is a specification for
an 800-Mbit/s serial data link that has been agreed upon by
over 40 vendors and users. Serial-HIPPI transmits data be
tween HIPPI-PH nodes, up to 25 meters in coaxial cable, or
10 km with optical fiber. HIPPI-PH is an ANSI standard
(X3. 183-1991) for transmitting digital data in parallel between
data processing equipment nodes. It is prevalent in super-
computing and high-end workstation environments. Fig. 17
shows a diagram of a complete Serial-HIPPI system using
the G-link chipset. HIPPI-PH data consists of 44-bit-wide
words at 25 Mwords/s. This data includes 32 data bits, 4 par
ity bits, 7 control bits, and the clock. Ahead of the G-link
transmitter there is an additional circuit called the XMUX.
This circuit reduces the data from 44 bits to 40 bits by re
placing two control signals with the chipset's RFD, replacing
the HIPPI-PH clock with the clock derived from the incoming
serial data, and encoding three of the other control signals
into two lines. The XMUX then multiplexes the data 40:20.
This data is transmitted with the G-link chipset as 40-bit

114 October 1992 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

words, in the manner described pre\iously. At the receiver.
the XDEML'X demultiplexes the recovered data from the
chipset 20:40. then restores the additional four signals.

Serial-HIPPI is intended to provide compatibility at the serial
optical and serial electrical interfaces. Therefore, the G-link
startup sequence and line code are part of the specification.
Hewlett-Packard is supplying the G-link chipset. The XMI "X
and XDEMUX are commercially available.

SCI-FI
The G-link chipset was also chosen as the transport mecha
nism for the SCI-FI (Scalable Coherent Interface-Fiber) stan
dard (IEEE P1596). SCI is intended to replace traditional
backplane buses, which are limited in physical length and in
the number of elements that can be connected to the bus,
and are limited to only one transaction on the bus at a given
time. SCI solves these problems using point-to-point com
munication between nodes. For short distances, data can be
sent in parallel on metallic conductors. For longer distances,
better noise performance, and smaller physical size, optical
fiber or coaxial cable is used to transmit the data serially.
Data is transmitted as 17-bit words (16 bits plus flag) at 1.25
Gbaud. No additional circuitry is required assuming that the
data is already in the P 18 form specified in the standard
(parallel data, 16 bits plus flag and clock).

Simplex Applications
The applications discussed up to now have all been full-
duplex; there is a forward data path and there is an equiva
lent reverse data path. This covers the great majority of ap
plications. However, there are some applications in which a
particular piece of equipment is primarily a data source or
sink but not both.

These applications can be divided into two categories. In the
first category are systems where data primarily flows in one
direction, but there is a lower-speed method of communicat
ing in the reverse direction. An example of this kind of sys
tem is a video terminal, which might receive a tremendous
amount of video data and send back only the very low-rate
typed commands of a user. Fig. 18 shows the G-link chipset
connected for this type of system. A transmitter at the data
source is connected with a single fiber to a receiver at the
destination. The low-speed return path is used to pass only
the STAT1 indication from the state machine controller at the
receiver back to the source. This signal makes a transition
only after power-on, or if lock is lost for some reason. It
indicates to the transmitter when the receiver is locked and
ready for data, or if the receiver needs to be sent FF1 to
become locked. Since this signal changes state infrequently

Optical
Transmitter

RFD
(Ready

for Data)

Low-Speed Data Path

Fig. video Simplex system with low-speed return path (e.g., a video
terminal).

DOUT.
STRBIN G-Link

Transmitter

Crystal
Oscil lator

Fig. 19. In a simplex system with no return path, such as a video
distribution system, the receiver input is automatically switched (by
the STATl signal) between the external crystal oscillator for frequency-
lock and the input data for phase lock until the master transition is
acquired. STROBIN is the transmitter data clock input. DOUT is the nor
mal transmitter serial data output. LIN is the receiver loopback serial
data input. DIN is the normal receiver serial data input. STAT1 is the
receiver state machine status output. FDIS is the receiver frequency
detector disable input. LOOPEN is the receiver loopback control.

and its timing is not critical, it can be sent over any available
return path, possibly over a single dedicated metallic wire, or
mixed in with other low-speed data on an RS-232 connection
or telephone line.

There are a few communication systems that are strictly
simplex and have no return path at all. These systems are
inherently problematic for ensuring data integrity because
there is no way of knowing the status at the receiving end of
the link. A typical example of this type of network is video
distribution. Special techniques should be applied when the
G-link chipset is used for these types of applications.

A practical and inexpensive solution is shown in Fig. 19.
Three receiver pins are connected together. This solution
takes advantage of the G-link receiver's state machine to
monitor and switch data paths depending on the lock condi
tions. The only additional component required is an inexpen
sive is oscillator operating at the frame Tate, which is
used to frequency lock the receiver VCO. After frequency
lock, the state machine automatically switches the receiver
to the data input (LIN) and phase lock takes place. If the re
ceiver does not lock onto the master transition, internal
error checking will cause the state machine to reset and
switch the receiver back to the crystal reference. The small
frequency differences between the transmit and receive os
cillators will provide a phase shift that will allow the re
ceiver to lock onto the master transition correctly. Typical
lock times will be on the order of a few milliseconds, which
can be improved if necessary by pulling the crystal refer
ence slightly off frequency. Lock times under 200 us are
achievable by adding phase modulation or programmed
delay in the crystal oscillator path.

Summary
The G-link chipset is a highly integrated, compact, silicon
chipset with features that enable it to serve a number of
application areas. It performs its own startup and framing.
This allows a user to transmit data continuously, without
inserting extra characters, in a virtual ribbon cable mode.
The chipset includes data available and control word signals
which allow the creation of simple packets. The chipset ac
cepts a wide range of input word widths, allowing a good
match to a variety of computer buses. The wide range of
serial data rates makes it an ideal transport vehicle for

October 1!)H2 Hewlett-Packard Journal 115
© Copr. 1949-1998 Hewlett-Packard Co.

125-Mbit/s FDDI data to 1.24-Gbit/s SONET data. The chip
set can work in simplex systems, allowing its use for distrib
uting video. Two widely accepted networking standards,
Serial-HIPPI and SCI-FI, are tailored to the operation of the
G-link chipset. The production volume made possible by this
broad range of applications should make possible truly
low-cost gigabit-rate data links.

Acknowledgments
We would like to thank Tom Hornak for his many contribu
tions to this project, and his guidance throughout its devel
opment. Thanks to J.T. Wu for his contributions to the re
ceiver chip design and layout. Kent Springer, Rasmus
Nordby, Craig Corsetto, and Doug Crandall all had an early
influence on the project. Hans Wiggers, David Cunningham,
Steve Methley, David Sears, and Richard Dugan have been
responsible for the G-link's success in the standards arena.

David Yoo, Jean Norman, Natalia McAfee, and Lie Lian-
Mueller have all helped with the assembly and packaging of
the chipset. Special thanks to Don Pettengill, Shang-Yi
Chiang, and the HP B25000 process team, without whose
excellent work and cooperation this project would not have
succeeded.

References
1. D. Crandall, et al, DC-Free Line Code for Arbitrary Data Trans

mission, U.S. Patent no. 5,022,051, June 4, 1991.
2. R.O. Carter, "Low-Disparity Binary Coding System," Electronic

Letters, Vol. 1, no. 3, May 1965, pp. 67-68.
3. C. in et al, Phase-Locked Loop for Clock Extraction in

Gigabit Rate Data Communication Links, U.S. Patent no.
4,926,447, May 15, 1990.
4. B. Lai, "A 3.5 Gb/s Fully Retimed Decision Circuit with Tempera
ture Compensation," Proceedings of the 1988 Design Technology

Conference, Hewlett-Packard, May 1988, pp. 296-303.

Ã‰P: Susan Wriqht / 97LDC 00065410
5731

T c : L E k I S Â » K f t R E N
H P C O R D O R A T Â £ H E A D Q U A R T E R S

0000 20BÂ°
IOR S1454R

O c t o b e r 1 9 9 2 V o l u m e 4 3 â € ¢ N u m b e r 5

Techn ica l In fo rmat ion f rom the Labora to r ies o t
H e w l e t t - P a c k a r d C o m p a n y

H e w l e t t - P a c k a r d C o m p a n y , P . O . B o x 5 1 8 2 7
P a l o A l t o , C a l i f o r n i a , 9 4 3 0 3 - 0 7 2 4 U . S . A .

Y o k o g a w a - H e w l e t t - P a c k a r d L t d . , S u g m a m i - K u T o k y o 1 6 8 J a p a n

H E W L E T T
P A C K A R D

5 0 9 1 - 5 2 7 3 E

© Copr. 1949-1998 Hewlett-Packard Co.

	The HP Network Advisor: A Portable Test Tool for Protocol Analysis
	Network Advisor Product Enhancement Philosophy
	Embedding Artificial Intelligence in a LAN Test Instrument
	The User Interface for the HP 4980 Network Advisor Protocol Analyzer
	Object-Oriented Design and Smalltalk
	The Forth Interpreter
	The Network Advisor Analysis and Real-Time Environment
	Network Advisor Protocol Analysis: Decodes
	Mechanical Design of the HP 4980 Network Advisor
	Frequency Translation as Convolution
	Design Considerations in the Microwave Transition Analyzer
	A Visual Engineering Environment for Test Software Development
	Object-Oriented Programming in a Large System
	Developing an Advanced User Interface for HP VEE
	HP VEE: A Dataflow Architecture
	A Performance Monitoring System for Digital Telecommunications Networks
	G Link: A Chipset for Gigabit-Rate Data Communication
	Bang-Bang Loop Analysis

